Hybridization and Postprocessing Techniques for Mixed Eigenfunctions

We introduce hybridization and postprocessing techniques for the Raviart-Thomas approximation of second-order elliptic eigenvalue problems. Hybridization reduces the Raviart-Thomas approximation to a condensed eigenproblem. The condensed eigenproblem is nonlinear, but smaller than the original mixed...

Full description

Bibliographic Details
Main Authors: Peraire, Jaime (Contributor), Nguyen, Ngoc Cuong (Contributor), Cockburn, Bernardo (Author), Gopalakrishnan, Jayadeep (Author), Li, Fengyan (Author)
Other Authors: Massachusetts Institute of Technology. Department of Aeronautics and Astronautics (Contributor)
Format: Article
Language:English
Published: Society for Industrial and Applied Mathematics, 2011-02-16T16:10:41Z.
Subjects:
Online Access:Get fulltext
LEADER 02029 am a22002773u 4500
001 60955
042 |a dc 
100 1 0 |a Peraire, Jaime  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Aeronautics and Astronautics  |e contributor 
100 1 0 |a Peraire, Jaime  |e contributor 
100 1 0 |a Peraire, Jaime  |e contributor 
100 1 0 |a Nguyen, Ngoc Cuong  |e contributor 
700 1 0 |a Nguyen, Ngoc Cuong  |e author 
700 1 0 |a Cockburn, Bernardo  |e author 
700 1 0 |a Gopalakrishnan, Jayadeep  |e author 
700 1 0 |a Li, Fengyan  |e author 
245 0 0 |a Hybridization and Postprocessing Techniques for Mixed Eigenfunctions 
260 |b Society for Industrial and Applied Mathematics,   |c 2011-02-16T16:10:41Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/60955 
520 |a We introduce hybridization and postprocessing techniques for the Raviart-Thomas approximation of second-order elliptic eigenvalue problems. Hybridization reduces the Raviart-Thomas approximation to a condensed eigenproblem. The condensed eigenproblem is nonlinear, but smaller than the original mixed approximation. We derive multiple iterative algorithms for solving the condensed eigenproblem and examine their interrelationships and convergence rates. An element-by-element postprocessing technique to improve accuracy of computed eigenfunctions is also presented. We prove that a projection of the error in the eigenspace approximation by the mixed method (of any order) superconverges and that the postprocessed eigenfunction approximations converge faster for smooth eigenfunctions. Numerical experiments using a square and an L-shaped domain illustrate the theoretical results. 
520 |a National Science Foundation (U.S.) (Grant DMS-0712955) (Grant DMS-0713833) (Grant DMS-0652481) (CAREER award DMS-0847241) 
520 |a Singapore-MIT Alliance 
520 |a United States. Air Force Office of Scientific Research (Grant FA9550-08-1-0350) 
546 |a en_US 
655 7 |a Article 
773 |t SIAM Journal on Numerical Analysis