Blendenpik: Supercharging LAPACK's Least-Squares Solver

Several innovative random-sampling and random-mixing techniques for solving problems in linear algebra have been proposed in the last decade, but they have not yet made a significant impact on numerical linear algebra. We show that by using a high-quality implementation of one of these techniques, w...

Full description

Bibliographic Details
Main Authors: Maymounkov, Petar Borissov (Contributor), Toledo, Sivan (Contributor), Avron, Haim (Author)
Other Authors: Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory (Contributor), Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science (Contributor)
Format: Article
Language:English
Published: Society for Industrial and Applied Mathematics, 2011-02-16T15:50:47Z.
Subjects:
Online Access:Get fulltext
Description
Summary:Several innovative random-sampling and random-mixing techniques for solving problems in linear algebra have been proposed in the last decade, but they have not yet made a significant impact on numerical linear algebra. We show that by using a high-quality implementation of one of these techniques, we obtain a solver that performs extremely well in the traditional yardsticks of numerical linear algebra: it is significantly faster than high-performance implementations of existing state-of-the-art algorithms, and it is numerically backward stable. More specifically, we describe a least-squares solver for dense highly overdetermined systems that achieves residuals similar to those of direct QR factorization-based solvers (lapack), outperforms lapack by large factors, and scales significantly better than any QR-based solver.
Israel Science Foundation (Grant 1045/09)
IBM Faculty Partnership Award