Translation-invariant topological superconductors on a lattice

In this paper we introduce four Z2 topological indices zeta k=0,1 at k=(0,0), (0,pi), (pi,0), and (pi,pi) characterizing 16 universal classes of two-dimensional superconducting states that have translation symmetry but may break any other symmetries. The 16 classes of superconducting states are dist...

Full description

Bibliographic Details
Main Authors: Kou, Su-Peng (Author), Wen, Xiao-Gang (Contributor)
Other Authors: Massachusetts Institute of Technology. Department of Physics (Contributor)
Format: Article
Language:English
Published: American Physical Society, 2011-02-04T21:23:29Z.
Subjects:
Online Access:Get fulltext
LEADER 01692 am a22002293u 4500
001 60902
042 |a dc 
100 1 0 |a Kou, Su-Peng  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Physics  |e contributor 
100 1 0 |a Wen, Xiao-Gang  |e contributor 
100 1 0 |a Wen, Xiao-Gang  |e contributor 
700 1 0 |a Wen, Xiao-Gang  |e author 
245 0 0 |a Translation-invariant topological superconductors on a lattice 
260 |b American Physical Society,   |c 2011-02-04T21:23:29Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/60902 
520 |a In this paper we introduce four Z2 topological indices zeta k=0,1 at k=(0,0), (0,pi), (pi,0), and (pi,pi) characterizing 16 universal classes of two-dimensional superconducting states that have translation symmetry but may break any other symmetries. The 16 classes of superconducting states are distinguished by their even/odd numbers of fermions on even-by-even, even-by-odd, odd-by-even, and odd-by-odd lattices. As a result, the 16 classes topological superconducting states exist even for interacting systems. For noninteracting systems, we find that zeta k is the number of electrons on k=(0,0), (0,pi), (pi,0), or (pi,pi) orbitals (mod 2) in the ground state. For three-dimensional superconducting states with only translation symmetry, topological indices give rise to 256 different types of topological superconductors. 
520 |a National Science Foundation (U.S.) (Grant No. DMR-0706078) 
520 |a National Natural Science Foundation of China (Grant No. 10228408) 
520 |a National Natural Science Foundation of China (Grant No. 10874017) 
546 |a en_US 
655 7 |a Article 
773 |t Physical Review B