Discriminative training of hierarchical acoustic models for large vocabulary continuous speech recognition

In this paper we propose discriminative training of hierarchical acoustic models for large vocabulary continuous speech recognition tasks. After presenting our hierarchical modeling framework, we describe how the models can be generated with either minimum classification error or large-margin traini...

Full description

Bibliographic Details
Main Authors: Chang, Hung-An (Contributor), Glass, James R. (Contributor)
Other Authors: Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory (Contributor), Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science (Contributor)
Format: Article
Language:English
Published: Institute of Electrical and Electronics Engineers, 2011-01-14T13:39:59Z.
Subjects:
Online Access:Get fulltext
LEADER 01583 am a22002293u 4500
001 60562
042 |a dc 
100 1 0 |a Chang, Hung-An  |e author 
100 1 0 |a Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory  |e contributor 
100 1 0 |a Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science  |e contributor 
100 1 0 |a Glass, James R.  |e contributor 
100 1 0 |a Chang, Hung-An  |e contributor 
100 1 0 |a Glass, James R.  |e contributor 
700 1 0 |a Glass, James R.  |e author 
245 0 0 |a Discriminative training of hierarchical acoustic models for large vocabulary continuous speech recognition 
260 |b Institute of Electrical and Electronics Engineers,   |c 2011-01-14T13:39:59Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/60562 
520 |a In this paper we propose discriminative training of hierarchical acoustic models for large vocabulary continuous speech recognition tasks. After presenting our hierarchical modeling framework, we describe how the models can be generated with either minimum classification error or large-margin training. Experiments on a large vocabulary lecture transcription task show that the hierarchical model can yield more than 1.0% absolute word error rate reduction over non-hierarchical models for both kinds of discriminative training. 
520 |a Taiwan Merit Scholarship (Number NSC-095- SAF-I-564-040-TMS) 
546 |a en_US 
655 7 |a Article 
773 |t IEEE International Conference on Acoustics, Speech and Signal Processing, 2009. ICASSP 2009.