Sequential sparse matching pursuit

We propose a new algorithm, called sequential sparse matching pursuit (SSMP), for solving sparse recovery problems. The algorithm provably recovers a k-sparse approximation to an arbitrary n-dimensional signal vector x from only O(k log(n/k)) linear measurements of x. The recovery process takes time...

Full description

Bibliographic Details
Main Authors: Berinde, Radu (Contributor), Indyk, Piotr (Contributor)
Other Authors: Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science (Contributor)
Format: Article
Language:English
Published: Institute of Electrical and Electronics Engineers, 2010-10-01T18:19:38Z.
Subjects:
Online Access:Get fulltext
LEADER 01273 am a22002053u 4500
001 58832
042 |a dc 
100 1 0 |a Berinde, Radu  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science  |e contributor 
100 1 0 |a Indyk, Piotr  |e contributor 
100 1 0 |a Indyk, Piotr  |e contributor 
100 1 0 |a Berinde, Radu  |e contributor 
700 1 0 |a Indyk, Piotr  |e author 
245 0 0 |a Sequential sparse matching pursuit 
260 |b Institute of Electrical and Electronics Engineers,   |c 2010-10-01T18:19:38Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/58832 
520 |a We propose a new algorithm, called sequential sparse matching pursuit (SSMP), for solving sparse recovery problems. The algorithm provably recovers a k-sparse approximation to an arbitrary n-dimensional signal vector x from only O(k log(n/k)) linear measurements of x. The recovery process takes time that is only near-linear in n. Preliminary experiments indicate that the algorithm works well on synthetic and image data, with the recovery quality often outperforming that of more complex algorithms, such as à ¿1 minimization. 
546 |a en_US 
655 7 |a Article 
773 |t Allerton Conference on Communication, Control, and Computing