How to optimally parametrize deviations from general relativity in the evolution of cosmological perturbations

The next generation of weak lensing surveys will trace the growth of large scale perturbations through a sequence of epochs, offering an opportunity to test general relativity on cosmological scales. We review in detail the parametrization used in MGCAMB to describe the modified growth expected in a...

Full description

Bibliographic Details
Main Authors: Pogosian, Levon (Author), Silvestri, Alessandra (Contributor), Koyama, Kazuya (Author), Zhao, Gong-Bo (Author)
Other Authors: Massachusetts Institute of Technology. Department of Physics (Contributor), MIT Kavli Institute for Astrophysics and Space Research (Contributor)
Format: Article
Language:English
Published: American Physical Society, 2010-09-27T20:55:15Z.
Subjects:
Online Access:Get fulltext
LEADER 02023 am a22002893u 4500
001 58721
042 |a dc 
100 1 0 |a Pogosian, Levon  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Physics  |e contributor 
100 1 0 |a MIT Kavli Institute for Astrophysics and Space Research  |e contributor 
100 1 0 |a Silvestri, Alessandra  |e contributor 
100 1 0 |a Silvestri, Alessandra  |e contributor 
700 1 0 |a Silvestri, Alessandra  |e author 
700 1 0 |a Koyama, Kazuya  |e author 
700 1 0 |a Zhao, Gong-Bo  |e author 
245 0 0 |a How to optimally parametrize deviations from general relativity in the evolution of cosmological perturbations 
260 |b American Physical Society,   |c 2010-09-27T20:55:15Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/58721 
520 |a The next generation of weak lensing surveys will trace the growth of large scale perturbations through a sequence of epochs, offering an opportunity to test general relativity on cosmological scales. We review in detail the parametrization used in MGCAMB to describe the modified growth expected in alternative theories of gravity and generalized dark energy models. We highlight its advantages and examine several theoretical aspects. In particular, we show that the same set of equations can be consistently used on superhorizon and subhorizon linear scales. We also emphasize the sensitivity of data to scale-dependent features in the growth pattern, and propose using principal component analysis to converge on a practical set of parameters which is most likely to detect departures from general relativity. The connection with other parametrizations is also discussed. 
520 |a Natural Sciences and Engineering Research Council of Canada 
520 |a Simon Fraser University 
520 |a National Science Foundation (AST-0708501) 
520 |a European Research Council 
520 |a Science and Technology Facilities Council (Great Britain) 
546 |a en_US 
655 7 |a Article 
773 |t Physical Review D