Non-Abelian quantum Hall states and their quasiparticles: From the pattern of zeros to vertex algebra

In the pattern-of-zeros approach to quantum Hall states, a set of data {n;m;S[subscript a]|a=1,...,n;n,m,S[subscript a]∊N} (called the pattern of zeros) is introduced to characterize a quantum Hall wave function. In this paper we find sufficient conditions on the pattern of zeros so that the data co...

Full description

Bibliographic Details
Main Authors: Lu, Yuan-Ming (Author), Wen, Xiao-Gang (Contributor), Wang, Zhenghan (Author), Wang, Ziqiang (Author)
Other Authors: Massachusetts Institute of Technology. Department of Physics (Contributor)
Format: Article
Language:English
Published: American Physical Society, 2010-09-27T16:10:12Z.
Subjects:
Online Access:Get fulltext
LEADER 02513 am a22002893u 4500
001 58714
042 |a dc 
100 1 0 |a Lu, Yuan-Ming  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Physics  |e contributor 
100 1 0 |a Wen, Xiao-Gang  |e contributor 
100 1 0 |a Wen, Xiao-Gang  |e contributor 
700 1 0 |a Wen, Xiao-Gang  |e author 
700 1 0 |a Wang, Zhenghan  |e author 
700 1 0 |a Wang, Ziqiang  |e author 
245 0 0 |a Non-Abelian quantum Hall states and their quasiparticles: From the pattern of zeros to vertex algebra 
260 |b American Physical Society,   |c 2010-09-27T16:10:12Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/58714 
520 |a In the pattern-of-zeros approach to quantum Hall states, a set of data {n;m;S[subscript a]|a=1,...,n;n,m,S[subscript a]∊N} (called the pattern of zeros) is introduced to characterize a quantum Hall wave function. In this paper we find sufficient conditions on the pattern of zeros so that the data correspond to a valid wave function. Some times, a set of data {n;m;S[subscript a]} corresponds to a unique quantum Hall state, while other times, a set of data corresponds to several different quantum Hall states. So in the latter cases, the pattern of zeros alone does not completely characterize the quantum Hall states. In this paper, we find that the following expanded set of data {n;m;S[subscript a];c|a=1,...,n;n,m,S[subscript a]∊N;c∊R} provides a more complete characterization of quantum Hall states. Each expanded set of data completely characterizes a unique quantum Hall state, at least for the examples discussed in this paper. The result is obtained by combining the pattern of zeros and Zn simple-current vertex algebra which describes a large class of Abelian and non-Abelian quantum Hall states [phi]Zn[superscript sc]. The more complete characterization in terms of {n;m;S[subscript a];c} allows us to obtain more topological properties of those states, which include the central charge c of edge states, the scaling dimensions and the statistics of quasiparticle excitations. 
520 |a United States. Dept. of Energy (Grant No. DE-FG02-99ER45747) 
520 |a National Institutes of Health (U.S.) (DMR-0706078) 
520 |a National Institutes of Health (U.S.) (DMS- 034772) 
520 |a Perimeter Institute for Theoretical Physics 
520 |a Ontario. Ministry of Research and Innovation 
520 |a Canada. Industry Canada 
546 |a en_US 
655 7 |a Article 
773 |t Physical Review B