Coordinate Dependence of Variability Analysis

Analysis of motor performance variability in tasks with redundancy affords insight about synergies underlying central nervous system (CNS) control. Preferential distribution of variability in ways that minimally affect task performance suggests sophisticated neural control. Unfortunately, in the ana...

Full description

Bibliographic Details
Main Authors: Sternad, Dagmar (Author), Park, Se-Woong (Author), Muller, Hermann (Author), Hogan, Neville (Contributor)
Other Authors: Massachusetts Institute of Technology. Department of Brain and Cognitive Sciences (Contributor), Massachusetts Institute of Technology. Department of Mechanical Engineering (Contributor)
Format: Article
Language:English
Published: Public Library of Science, 2010-08-04T14:20:17Z.
Subjects:
Online Access:Get fulltext
LEADER 02694 am a22002893u 4500
001 57471
042 |a dc 
100 1 0 |a Sternad, Dagmar  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Brain and Cognitive Sciences  |e contributor 
100 1 0 |a Massachusetts Institute of Technology. Department of Mechanical Engineering  |e contributor 
100 1 0 |a Hogan, Neville  |e contributor 
100 1 0 |a Hogan, Neville  |e contributor 
700 1 0 |a Park, Se-Woong  |e author 
700 1 0 |a Muller, Hermann  |e author 
700 1 0 |a Hogan, Neville  |e author 
245 0 0 |a Coordinate Dependence of Variability Analysis 
260 |b Public Library of Science,   |c 2010-08-04T14:20:17Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/57471 
520 |a Analysis of motor performance variability in tasks with redundancy affords insight about synergies underlying central nervous system (CNS) control. Preferential distribution of variability in ways that minimally affect task performance suggests sophisticated neural control. Unfortunately, in the analysis of variability the choice of coordinates used to represent multi-dimensional data may profoundly affect analysis, introducing an arbitrariness which compromises its conclusions. This paper assesses the influence of coordinates. Methods based on analyzing a covariance matrix are fundamentally dependent on an investigator's choices. Two reasons are identified: using anisotropy of a covariance matrix as evidence of preferential distribution of variability; and using orthogonality to quantify relevance of variability to task performance. Both are exquisitely sensitive to coordinates. Unless coordinates are known a priori, these methods do not support unambiguous inferences about CNS control. An alternative method uses a two-level approach where variability in task execution (expressed in one coordinate frame) is mapped by a function to its result (expressed in another coordinate frame). An analysis of variability in execution using this function to quantify performance at the level of results offers substantially less sensitivity to coordinates than analysis of a covariance matrix of execution variables. This is an initial step towards developing coordinate-invariant analysis methods for movement neuroscience. 
520 |a National Science Foundation (BCS-0096543 and PAC-0450218 ) 
520 |a National Institutes of Health (R01HD045639 ) 
520 |a New York State Spinal Cord Injury Center of Research Excellence (CO19772) 
520 |a Toyota Motor Company's Partner Robot Division 
520 |a Eric P. and Evelyn E. Newman Fund 
546 |a en_US 
655 7 |a Article 
773 |t PLoS Computational Biology