Continuum-plasma solution surrounding nonemitting spherical bodies

The classical problem of the interaction of a nonemitting spherical body with a zero mean-free-path continuum plasma is solved numerically in the full range of physically allowed free parameters (electron Debye length to body radius ratio, ion to electron temperature ratio, and body bias), and analy...

Full description

Bibliographic Details
Main Authors: Patacchini, Leonardo (Contributor), Hutchinson, Ian H. (Contributor)
Other Authors: Massachusetts Institute of Technology. Department of Nuclear Science and Engineering (Contributor), Massachusetts Institute of Technology. Plasma Science and Fusion Center (Contributor)
Format: Article
Language:English
Published: American Institute of Physic, 2010-06-02T19:04:08Z.
Subjects:
Online Access:Get fulltext
LEADER 01573 am a22002173u 4500
001 55370
042 |a dc 
100 1 0 |a Patacchini, Leonardo  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Nuclear Science and Engineering  |e contributor 
100 1 0 |a Massachusetts Institute of Technology. Plasma Science and Fusion Center  |e contributor 
100 1 0 |a Hutchinson, Ian H.  |e contributor 
100 1 0 |a Hutchinson, Ian H.  |e contributor 
100 1 0 |a Patacchini, Leonardo  |e contributor 
700 1 0 |a Hutchinson, Ian H.  |e author 
245 0 0 |a Continuum-plasma solution surrounding nonemitting spherical bodies 
260 |b American Institute of Physic,   |c 2010-06-02T19:04:08Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/55370 
520 |a The classical problem of the interaction of a nonemitting spherical body with a zero mean-free-path continuum plasma is solved numerically in the full range of physically allowed free parameters (electron Debye length to body radius ratio, ion to electron temperature ratio, and body bias), and analytically in rigorously defined asymptotic regimes (weak and strong bias, weak and strong shielding, thin and thick sheath). Results include current-voltage characteristics as well as floating potential and capacitance, for both continuum and collisionless electrons. Our numerical computations show that for most combinations of physical parameters, there exists a closest asymptotic regime whose analytic solutions are accurate to 15% or better. 
546 |a en_US 
655 7 |a Article 
773 |t Physics of Plasmas