Feedback Capacity of the Compound Channel

In this work, we find the capacity of a compound finite-state channel (FSC) with time-invariant deterministic feedback. We consider the use of fixed length block codes over the compound channel. Our achievability result includes a proof of the existence of a universal decoder for the family of FSCs...

Full description

Bibliographic Details
Main Authors: Shrader, Brooke E. (Contributor), Permuter, Haim (Author)
Other Authors: Lincoln Laboratory (Contributor)
Format: Article
Language:English
Published: Institute of Electrical and Electronics Engineers, 2010-05-06T13:56:15Z.
Subjects:
Online Access:Get fulltext
LEADER 01821 am a22003253u 4500
001 54728
042 |a dc 
100 1 0 |a Shrader, Brooke E.  |e author 
100 1 0 |a Lincoln Laboratory  |e contributor 
100 1 0 |a Shrader, Brooke E.  |e contributor 
100 1 0 |a Shrader, Brooke E.  |e contributor 
700 1 0 |a Permuter, Haim  |e author 
245 0 0 |a Feedback Capacity of the Compound Channel 
260 |b Institute of Electrical and Electronics Engineers,   |c 2010-05-06T13:56:15Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/54728 
520 |a In this work, we find the capacity of a compound finite-state channel (FSC) with time-invariant deterministic feedback. We consider the use of fixed length block codes over the compound channel. Our achievability result includes a proof of the existence of a universal decoder for the family of FSCs with feedback. As a consequence of our capacity result, we show that feedback does not increase the capacity of the compound Gilbert-Elliot channel. Additionally, we show that for a stationary and uniformly ergodic Markovian channel, if the compound channel capacity is zero without feedback then it is zero with feedback. Finally, we use our result on the FSC to show that the feedback capacity of the memoryless compound channel is given by inf[subscript thetas] max[subscript QX] I(X; Y |thetas). 
546 |a en_US 
690 |a universal decoder 
690 |a types of code-trees 
690 |a finite-state channel (FSC) 
690 |a feedback capacity 
690 |a directed information 
690 |a compound channel 
690 |a code-trees 
690 |a Sanov's theorem 
690 |a Pinsker's inequality 
690 |a Gilbert-Elliot channel 
690 |a Causal conditioning probability 
655 7 |a Article 
773 |t IEEE Transactions on Information Theory