Creation mechanism of quantum accelerator modes

We investigate the creation mechanism of quantum accelerator modes which are attributed to the existence of the stability islands in an underlying pseudoclassical phase space of the quantum delta-kicked accelerator. Quantum accelerator modes can be created by exposing a Bose-Einstein condensate to a...

Full description

Bibliographic Details
Main Authors: Summy, G. S. (Author), Ramareddy, V. (Author), Behinaein, G. (Author), Ahmadi, Peyman (Contributor)
Other Authors: Massachusetts Institute of Technology. Department of Physics (Contributor)
Format: Article
Language:English
Published: American Physical Society, 2010-03-11T15:32:17Z.
Subjects:
Online Access:Get fulltext
LEADER 01569 am a22002173u 4500
001 52497
042 |a dc 
100 1 0 |a Summy, G. S.  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Physics  |e contributor 
100 1 0 |a Ahmadi, Peyman  |e contributor 
100 1 0 |a Ahmadi, Peyman  |e contributor 
700 1 0 |a Ramareddy, V.  |e author 
700 1 0 |a Behinaein, G.  |e author 
700 1 0 |a Ahmadi, Peyman  |e author 
245 0 0 |a Creation mechanism of quantum accelerator modes 
260 |b American Physical Society,   |c 2010-03-11T15:32:17Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/52497 
520 |a We investigate the creation mechanism of quantum accelerator modes which are attributed to the existence of the stability islands in an underlying pseudoclassical phase space of the quantum delta-kicked accelerator. Quantum accelerator modes can be created by exposing a Bose-Einstein condensate to a pulsed standing light wave. We show that constructive interference between momentum states populated by the pulsed light determines the stability island's existence in the underlying pseudoclassical phase space. We generalize this interference model to incorporate higher-order accelerator modes, showing that they are generated if the rephasing occurs after multiple pulses. The model is extended to predict the momentum structure of the quantum accelerator modes close to higher-order quantum resonances. These predictions are in good agreement with our experimental observations. 
546 |a en_US 
655 7 |a Article 
773 |t Physical Review A