Trapping and Manipulation of Isolated Atoms Using Nanoscale Plasmonic Structures

We propose and analyze a scheme to interface individual neutral atoms with nanoscale solid-state systems. The interface is enabled by optically trapping the atom via the strong near-field generated by a sharp metallic nanotip. We show that under realistic conditions, a neutral atom can be trapped wi...

Full description

Bibliographic Details
Main Authors: Chang, D. E. (Author), Thompson, J. D. (Author), Park, H. (Author), Vuletic, Vladan (Contributor), Zibrov, A. S. (Author), Zoller, P. (Author), Lukin, M. D. (Author)
Other Authors: Massachusetts Institute of Technology. Department of Physics (Contributor)
Format: Article
Language:English
Published: American Physical Society, 2010-03-05T15:11:21Z.
Subjects:
Online Access:Get fulltext
LEADER 01755 am a22003133u 4500
001 52332
042 |a dc 
100 1 0 |a Chang, D. E.  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Physics  |e contributor 
100 1 0 |a Vuletic, Vladan  |e contributor 
100 1 0 |a Vuletic, Vladan  |e contributor 
700 1 0 |a Thompson, J. D.  |e author 
700 1 0 |a Park, H.  |e author 
700 1 0 |a Vuletic, Vladan  |e author 
700 1 0 |a Zibrov, A. S.  |e author 
700 1 0 |a Zoller, P.  |e author 
700 1 0 |a Lukin, M. D.  |e author 
245 0 0 |a Trapping and Manipulation of Isolated Atoms Using Nanoscale Plasmonic Structures 
260 |b American Physical Society,   |c 2010-03-05T15:11:21Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/52332 
520 |a We propose and analyze a scheme to interface individual neutral atoms with nanoscale solid-state systems. The interface is enabled by optically trapping the atom via the strong near-field generated by a sharp metallic nanotip. We show that under realistic conditions, a neutral atom can be trapped with position uncertainties of just a few nanometers, and within tens of nanometers of other surfaces. Simultaneously, the guided surface plasmon modes of the nanotip allow the atom to be optically manipulated, or for fluorescence photons to be collected, with very high efficiency. Finally, we analyze the surface forces, heating and decoherence rates acting on the trapped atom. 
520 |a Gordon and Betty Moore Foundation 
520 |a Packard Foundation 
520 |a Defense Advanced Research Projects Agency 
520 |a Harvard-MIT Center for Ultracold Atoms 
520 |a National Science Foundation 
546 |a en_US 
655 7 |a Article 
773 |t Physical Review Letters