Separation of Microscale Chiral Objects by Shear Flow

We show that plane parabolic flow in a microfluidic channel causes nonmotile, helically shaped bacteria to drift perpendicular to the shear plane. Net drift results from the preferential alignment of helices with streamlines, with a direction that depends on the chirality of the helix and the sign o...

Full description

Bibliographic Details
Main Authors: Powers, Thomas R. (Author), Fu, Henry C. (Author), Stocker, Roman (Contributor), Marcos (Contributor)
Other Authors: Massachusetts Institute of Technology. Department of Civil and Environmental Engineering (Contributor), Massachusetts Institute of Technology. Department of Mechanical Engineering (Contributor)
Format: Article
Language:English
Published: American Physical Society, 2010-02-23T20:25:13Z.
Subjects:
Online Access:Get fulltext
LEADER 01463 am a22002413u 4500
001 51794
042 |a dc 
100 1 0 |a Powers, Thomas R.  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Civil and Environmental Engineering  |e contributor 
100 1 0 |a Massachusetts Institute of Technology. Department of Mechanical Engineering  |e contributor 
100 1 0 |a Stocker, Roman  |e contributor 
100 1 0 |a Marcos  |e contributor 
100 1 0 |a Stocker, Roman  |e contributor 
700 1 0 |a Fu, Henry C.  |e author 
700 1 0 |a Stocker, Roman  |e author 
700 1 0 |a Marcos  |e author 
245 0 0 |a Separation of Microscale Chiral Objects by Shear Flow 
260 |b American Physical Society,   |c 2010-02-23T20:25:13Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/51794 
520 |a We show that plane parabolic flow in a microfluidic channel causes nonmotile, helically shaped bacteria to drift perpendicular to the shear plane. Net drift results from the preferential alignment of helices with streamlines, with a direction that depends on the chirality of the helix and the sign of the shear rate. The drift is in good agreement with a model based on resistive force theory, and separation is efficient (>80%) and fast (<2  s). We estimate the effect of Brownian rotational diffusion on chiral separation and show how this method can be extended to separate chiral molecules. 
546 |a en_US 
655 7 |a Article 
773 |t Physical Review Letters