Equation of motion for the process matrix: Hamiltonian identification and dynamical control of open quantum systems

We develop a general approach for monitoring and controlling evolution of open quantum systems. In contrast to the master equations describing time evolution of density operators, here, we formulate a dynamical equation for the evolution of the process matrix acting on a system. This equation is app...

Full description

Bibliographic Details
Main Authors: Rezakhani, A. T. (Author), Mohseni, Masoud (Contributor)
Other Authors: Massachusetts Institute of Technology. Research Laboratory of Electronics (Contributor)
Format: Article
Language:English
Published: American Physical Society, 2010-02-05T14:43:03Z.
Subjects:
Online Access:Get fulltext
LEADER 01736 am a22002533u 4500
001 51366
042 |a dc 
100 1 0 |a Rezakhani, A. T.  |e author 
100 1 0 |a Massachusetts Institute of Technology. Research Laboratory of Electronics  |e contributor 
100 1 0 |a Mohseni, Masoud  |e contributor 
100 1 0 |a Mohseni, Masoud  |e contributor 
700 1 0 |a Mohseni, Masoud  |e author 
245 0 0 |a Equation of motion for the process matrix: Hamiltonian identification and dynamical control of open quantum systems 
260 |b American Physical Society,   |c 2010-02-05T14:43:03Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/51366 
520 |a We develop a general approach for monitoring and controlling evolution of open quantum systems. In contrast to the master equations describing time evolution of density operators, here, we formulate a dynamical equation for the evolution of the process matrix acting on a system. This equation is applicable to non-Markovian and/or strong-coupling regimes. We propose two distinct applications for this dynamical equation. We first demonstrate identification of quantum Hamiltonians generating dynamics of closed or open systems via performing process tomography. In particular, we argue how one can efficiently estimate certain classes of sparse Hamiltonians by performing partial tomography schemes. In addition, we introduce an optimal control theoretic setting for manipulating quantum dynamics of Hamiltonian systems, specifically for the task of decoherence suppression. 
520 |a PIMS 
520 |a MITACS 
520 |a iCORE 
520 |a NSERC 
520 |a USC Center for Quantum Information Science and Technology 
546 |a en_US 
655 7 |a Article 
773 |t Physical Review A