Better Distance Preservers and Additive Spanners

<jats:p> We study two popular ways to sketch the shortest path distances of an input graph. The first is <jats:italic>distance preservers</jats:italic> , which are sparse subgraphs that agree with the distances of the original graph on a given set of demand pairs. Prior work on dis...

Full description

Bibliographic Details
Main Authors: Bodwin, Greg (Author), Williams, Virginia Vassilevska (Author)
Format: Article
Language:English
Published: Association for Computing Machinery (ACM), 2022-07-21T17:13:17Z.
Subjects:
Online Access:Get fulltext
LEADER 02479 am a22001693u 4500
001 143945
042 |a dc 
100 1 0 |a Bodwin, Greg  |e author 
700 1 0 |a Williams, Virginia Vassilevska  |e author 
245 0 0 |a Better Distance Preservers and Additive Spanners 
260 |b Association for Computing Machinery (ACM),   |c 2022-07-21T17:13:17Z. 
856 |z Get fulltext  |u https://hdl.handle.net/1721.1/143945 
520 |a <jats:p> We study two popular ways to sketch the shortest path distances of an input graph. The first is <jats:italic>distance preservers</jats:italic> , which are sparse subgraphs that agree with the distances of the original graph on a given set of demand pairs. Prior work on distance preservers has exploited only a simple structural property of shortest paths, called <jats:italic>consistency</jats:italic> , stating that one can break shortest path ties such that no two paths intersect, split apart, and then intersect again later. We prove that consistency alone is not enough to understand distance preservers, by showing both a lower bound on the power of consistency and a new general upper bound that polynomially surpasses it. Specifically, our new upper bound is that any <jats:italic>p</jats:italic> demand pairs in an <jats:italic>n</jats:italic> -node undirected unweighted graph have a distance preserver on O( <jats:italic>n</jats:italic> <jats:sup>2/3</jats:sup> <jats:italic>p</jats:italic> <jats:sup>2/3</jats:sup> + <jats:italic>np</jats:italic> <jats:sup>1/3</jats:sup> edges. We leave a conjecture that the right bound is <jats:italic>O</jats:italic> ( <jats:italic>n</jats:italic> <jats:sup>2/3</jats:sup> <jats:italic>p</jats:italic> <jats:sup>2/3</jats:sup> + <jats:italic>n</jats:italic> ) or better. </jats:p> <jats:p> The second part of this paper leverages these distance preservers in a new construction of <jats:italic>additive spanners</jats:italic> , which are subgraphs that preserve all pairwise distances up to an additive error function. We give improved error bounds for spanners with relatively few edges; for example, we prove that all graphs have spanners on <jats:italic>O(n)</jats:italic> edges with + <jats:italic>O</jats:italic> ( <jats:italic>n</jats:italic> <jats:sup>3/7 + ε</jats:sup> ) error. Our construction can be viewed as an extension of the popular path-buying framework to clusters of larger radii. </jats:p> 
546 |a en 
655 7 |a Article 
773 |t 10.1145/3490147 
773 |t ACM Transactions on Algorithms