Nonequilibrium Work Relations and Response Theories in Ensemble Quantum Systems
We develop a nonequilibrium response theory for macroscopic quantum systems that separates the contributions of ensemble heterogeneity and intrinsic quantum uncertainty. To accomplish this, we describe systems with a quantum P-ensemble, which goes beyond the standard density matrix description by ex...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
American Chemical Society (ACS),
2022-03-21T14:40:28Z.
|
Subjects: | |
Online Access: | Get fulltext |
Summary: | We develop a nonequilibrium response theory for macroscopic quantum systems that separates the contributions of ensemble heterogeneity and intrinsic quantum uncertainty. To accomplish this, we describe systems with a quantum P-ensemble, which goes beyond the standard density matrix description by explicitly specifying the classical heterogeneity between individual quantum systems in an ensemble. We use the P-ensemble formalism to present quantum generalizations of linear response theory and the Jarzynski nonequilibrium work relation. We derive these generalizations from a Bochkov-Kuzovlev generating functional for quantum P-ensembles, which can be further utilized to derive all orders of response theory that apply to ensemble quantum systems. We contrast these developments with their ρ-ensemble analogs, and we discuss how these P-ensemble theories provide a guide for an effective application of single molecule experiments. |
---|