Deep Learning for Seismic Inverse Problems: Toward the Acceleration of Geophysical Analysis Workflows

© 1991-2012 IEEE. Seismic inversion is a fundamental tool in geophysical analysis, providing a window into Earth. In particular, it enables the reconstruction of large-scale subsurface Earth models for hydrocarbon exploration, mining, earthquake analysis, shallow hazard assessment, and other geophys...

Full description

Bibliographic Details
Main Authors: Adler, Amir (Author), Araya-Polo, Mauricio (Author), Poggio, Tomaso (Author)
Format: Article
Language:English
Published: Institute of Electrical and Electronics Engineers (IEEE), 2022-03-21T13:20:58Z.
Subjects:
Online Access:Get fulltext
LEADER 00891 am a22001693u 4500
001 138408.2
042 |a dc 
100 1 0 |a Adler, Amir  |e author 
700 1 0 |a Araya-Polo, Mauricio  |e author 
700 1 0 |a Poggio, Tomaso  |e author 
245 0 0 |a Deep Learning for Seismic Inverse Problems: Toward the Acceleration of Geophysical Analysis Workflows 
260 |b Institute of Electrical and Electronics Engineers (IEEE),   |c 2022-03-21T13:20:58Z. 
856 |z Get fulltext  |u https://hdl.handle.net/1721.1/138408.2 
520 |a © 1991-2012 IEEE. Seismic inversion is a fundamental tool in geophysical analysis, providing a window into Earth. In particular, it enables the reconstruction of large-scale subsurface Earth models for hydrocarbon exploration, mining, earthquake analysis, shallow hazard assessment, and other geophysical tasks. 
546 |a en 
655 7 |a Article 
773 |t IEEE Signal Processing Magazine