A universally optimal multistage accelerated stochastic gradient method

© 2019 Neural information processing systems foundation. All rights reserved. We study the problem of minimizing a strongly convex, smooth function when we have noisy estimates of its gradient. We propose a novel multistage accelerated algorithm that is universally optimal in the sense that it achie...

Full description

Bibliographic Details
Main Authors: Aybat, NS (Author), Fallah, A (Author), Gürbüzbalaban, M (Author), Ozdaglar, A (Author)
Format: Article
Language:English
Published: 2021-11-04T16:40:38Z.
Subjects:
Online Access:Get fulltext
Description
Summary:© 2019 Neural information processing systems foundation. All rights reserved. We study the problem of minimizing a strongly convex, smooth function when we have noisy estimates of its gradient. We propose a novel multistage accelerated algorithm that is universally optimal in the sense that it achieves the optimal rate both in the deterministic and stochastic case and operates without knowledge of noise characteristics. The algorithm consists of stages that use a stochastic version of Nesterov's method with a specific restart and parameters selected to achieve the fastest reduction in the bias-variance terms in the convergence rate bounds.