Identifying central endomorphisms of an abelian variety via Frobenius endomorphisms

Abstract Assuming the Mumford-Tate conjecture, we show that the center of the endomorphism ring of an abelian variety defined over a number field can be recovered from an appropriate intersection of the fields obtained from its Frobenius endomorphisms. We then apply this result to exhibit a practica...

Full description

Bibliographic Details
Main Authors: Costa, Edgar (Author), Lombardo, Davide (Author), Voight, John (Author)
Format: Article
Language:English
Published: Springer International Publishing, 2021-11-01T14:33:47Z.
Subjects:
Online Access:Get fulltext
LEADER 00816 am a22001573u 4500
001 136851
042 |a dc 
100 1 0 |a Costa, Edgar  |e author 
700 1 0 |a Lombardo, Davide  |e author 
700 1 0 |a Voight, John  |e author 
245 0 0 |a Identifying central endomorphisms of an abelian variety via Frobenius endomorphisms 
260 |b Springer International Publishing,   |c 2021-11-01T14:33:47Z. 
856 |z Get fulltext  |u https://hdl.handle.net/1721.1/136851 
520 |a Abstract Assuming the Mumford-Tate conjecture, we show that the center of the endomorphism ring of an abelian variety defined over a number field can be recovered from an appropriate intersection of the fields obtained from its Frobenius endomorphisms. We then apply this result to exhibit a practical algorithm to compute this center. 
546 |a en 
655 7 |a Article