Classical Affine W-Algebras for glN and Associated Integrable Hamiltonian Hierarchies

© 2016, Springer-Verlag Berlin Heidelberg. We apply the new method for constructing integrable Hamiltonian hierarchies of Lax type equations developed in our previous paper to show that all W-algebras W(glN, f) carry such a hierarchy. As an application, we show that all vector constrained KP hierarc...

Full description

Bibliographic Details
Main Authors: De Sole, Alberto (Author), Kac, Victor G (Author), Valeri, Daniele (Author)
Format: Article
Language:English
Published: Springer Science and Business Media LLC, 2021-10-27T20:05:20Z.
Subjects:
Online Access:Get fulltext
LEADER 01039 am a22001813u 4500
001 134510
042 |a dc 
100 1 0 |a De Sole, Alberto  |e author 
700 1 0 |a Kac, Victor G  |e author 
700 1 0 |a Valeri, Daniele  |e author 
245 0 0 |a Classical Affine W-Algebras for glN and Associated Integrable Hamiltonian Hierarchies 
260 |b Springer Science and Business Media LLC,   |c 2021-10-27T20:05:20Z. 
856 |z Get fulltext  |u https://hdl.handle.net/1721.1/134510 
520 |a © 2016, Springer-Verlag Berlin Heidelberg. We apply the new method for constructing integrable Hamiltonian hierarchies of Lax type equations developed in our previous paper to show that all W-algebras W(glN, f) carry such a hierarchy. As an application, we show that all vector constrained KP hierarchies and their matrix generalizations are obtained from these hierarchies by Dirac reduction, which provides the former with a bi-Poisson structure. 
546 |a en 
655 7 |a Article 
773 |t 10.1007/S00220-016-2632-9 
773 |t Communications in Mathematical Physics