Central extensions by K2 and factorization line bundles

Let X be a smooth, geometrically connected curve over a perfect field k. Given a connected, reductive group G, we prove that central extensions of G by the sheaf K2 on the big Zariski site of X, studied in Brylinski-Deligne [5], are equivalent to factorization line bundles on the Beilinson-Drinfeld...

Full description

Bibliographic Details
Main Authors: Tao, James (Author), Zhao, Yifei (Author)
Format: Article
Language:English
Published: Springer Berlin Heidelberg, 2021-10-12T18:50:14Z.
Subjects:
Online Access:Get fulltext
LEADER 00836 am a22001453u 4500
001 132935
042 |a dc 
100 1 0 |a Tao, James  |e author 
700 1 0 |a Zhao, Yifei  |e author 
245 0 0 |a Central extensions by K2 and factorization line bundles 
260 |b Springer Berlin Heidelberg,   |c 2021-10-12T18:50:14Z. 
856 |z Get fulltext  |u https://hdl.handle.net/1721.1/132935 
520 |a Let X be a smooth, geometrically connected curve over a perfect field k. Given a connected, reductive group G, we prove that central extensions of G by the sheaf K2 on the big Zariski site of X, studied in Brylinski-Deligne [5], are equivalent to factorization line bundles on the Beilinson-Drinfeld affine Grassmannian GrG. Our result affirms a conjecture of Gaitsgory-Lysenko [13] and classifies factorization line bundles on GrG. . 
546 |a en 
655 7 |a Article