|
|
|
|
LEADER |
02359 am a22002773u 4500 |
001 |
132594 |
042 |
|
|
|a dc
|
100 |
1 |
0 |
|a Weinberger, Rainer
|e author
|
700 |
1 |
0 |
|a Springel, Volker
|e author
|
700 |
1 |
0 |
|a Hernquist, Lars
|e author
|
700 |
1 |
0 |
|a Pillepich, Annalisa
|e author
|
700 |
1 |
0 |
|a Marinacci, Federico
|e author
|
700 |
1 |
0 |
|a Pakmor, Rüdiger
|e author
|
700 |
1 |
0 |
|a Nelson, Dylan
|e author
|
700 |
1 |
0 |
|a Genel, Shy
|e author
|
700 |
1 |
0 |
|a Vogelsberger, Mark
|e author
|
700 |
1 |
0 |
|a Naiman, Jill
|e author
|
700 |
1 |
0 |
|a Torrey, Paul
|e author
|
245 |
0 |
0 |
|a Simulating galaxy formation with black hole driven thermal and kinetic feedback
|
260 |
|
|
|b Oxford University Press (OUP),
|c 2021-09-20T18:23:14Z.
|
856 |
|
|
|z Get fulltext
|u https://hdl.handle.net/1721.1/132594
|
520 |
|
|
|a © 2016 The Authors. The inefficiency of star formation in massive elliptical galaxies is widely believed to be caused by the interactions of an active galactic nucleus (AGN) with the surrounding gas. Achieving a sufficiently rapid reddening of moderately massive galaxies without expelling too many baryons has however proven difficult for hydrodynamical simulations of galaxy formation, prompting us to explore a new model for the accretion and feedback effects of supermassive black holes. For high-accretion rates relative to the Eddington limit, we assume that a fraction of the accreted rest mass energy heats the surrounding gas thermally, similar to the 'quasar mode' in previouswork. For low-accretion rates, we invoke a new, pure kinetic feedback model that imparts momentum to the surrounding gas in a stochastic manner. These two modes of feedback are motivated both by theoretical conjectures for the existence of different types of accretion flows as well as recent observational evidence for the importance of kinetic AGN winds in quenching galaxies.We find that a large fraction of the injected kinetic energy in this mode thermalizes via shocks in the surrounding gas, thereby providing a distributed heating channel. In cosmological simulations, the resulting model produces red, non-star-forming massive elliptical galaxies, and achieves realistic gas fractions, black hole growth histories and thermodynamic profiles in large haloes.
|
546 |
|
|
|a en
|
655 |
7 |
|
|a Article
|
773 |
|
|
|t 10.1093/MNRAS/STW2944
|
773 |
|
|
|t Monthly Notices of the Royal Astronomical Society
|