A general fluid-sediment mixture model and constitutive theory validated in many flow regimes

We present a thermodynamically consistent constitutive model for fluid-saturated sediments, spanning dense to dilute regimes, developed from the basic balance laws for two-phase mixtures. The model can represent various limiting cases, such as pure fluid and dry grains. It is formulated to capture a...

Full description

Bibliographic Details
Main Authors: Baumgarten, Aaron S (Author), Kamrin, Kenneth N (Author)
Other Authors: Massachusetts Institute of Technology. Department of Aeronautics and Astronautics (Contributor), Massachusetts Institute of Technology. Department of Mechanical Engineering (Contributor)
Format: Article
Language:English
Published: Cambridge University Press (CUP), 2021-03-11T22:17:33Z.
Subjects:
Online Access:Get fulltext
LEADER 02108 am a22002053u 4500
001 130128
042 |a dc 
100 1 0 |a Baumgarten, Aaron S  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Aeronautics and Astronautics  |e contributor 
100 1 0 |a Massachusetts Institute of Technology. Department of Mechanical Engineering  |e contributor 
700 1 0 |a Kamrin, Kenneth N  |e author 
245 0 0 |a A general fluid-sediment mixture model and constitutive theory validated in many flow regimes 
260 |b Cambridge University Press (CUP),   |c 2021-03-11T22:17:33Z. 
856 |z Get fulltext  |u https://hdl.handle.net/1721.1/130128 
520 |a We present a thermodynamically consistent constitutive model for fluid-saturated sediments, spanning dense to dilute regimes, developed from the basic balance laws for two-phase mixtures. The model can represent various limiting cases, such as pure fluid and dry grains. It is formulated to capture a number of key behaviours such as: (i) viscous inertial rheology of submerged wet grains under steady shearing flows, (ii) the critical state behaviour of grains, which causes granular Reynolds dilation/contraction due to shear, (iii) the change in the effective viscosity of the fluid due to the presence of suspended grains and (iv) the Darcy-like drag interaction observed in both dense and dilute mixtures, which gives rise to complex fluid-grain interactions under dilation and flow. The full constitutive model is combined with the basic equations of motion for each mixture phase and implemented in the material point method (MPM) to accurately model the coupled dynamics of the mixed system. Qualitative results show the breadth of problems which this model can address. Quantitative results demonstrate the accuracy of this model as compared with analytical limits and experimental observations of fluid and grain behaviours in inhomogeneous geometries. ©2018 Cambridge University Press. 
520 |a Army Research Office (W911NF-16-1-0440) 
520 |a NSF (CBET-1253228) 
546 |a en 
655 7 |a Article 
773 |t Journal of Fluid Mechanics