Testing Ising Models

Given samples from an unknown multivariate distribution p, is it possible to distinguish whether p is the product of its marginals versus p being far from every product distribution? Similarly, is it possible to distinguish whether p equals a given distribution q versus p and q being far from each o...

Full description

Bibliographic Details
Main Authors: Daskalakis, Constantinos (Author), Dikkala, Sai Nishanth (Author)
Other Authors: Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science (Contributor)
Format: Article
Language:English
Published: Institute of Electrical and Electronics Engineers (IEEE), 2021-02-24T14:19:30Z.
Subjects:
Online Access:Get fulltext
LEADER 02142 am a22002053u 4500
001 129990
042 |a dc 
100 1 0 |a Daskalakis, Constantinos  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science  |e contributor 
700 1 0 |a Dikkala, Sai Nishanth  |e author 
245 0 0 |a Testing Ising Models 
260 |b Institute of Electrical and Electronics Engineers (IEEE),   |c 2021-02-24T14:19:30Z. 
856 |z Get fulltext  |u https://hdl.handle.net/1721.1/129990 
520 |a Given samples from an unknown multivariate distribution p, is it possible to distinguish whether p is the product of its marginals versus p being far from every product distribution? Similarly, is it possible to distinguish whether p equals a given distribution q versus p and q being far from each other? These problems of testing independence and goodness-of-fit have received enormous attention in statistics, information theory, and theoretical computer science, with sample-optimal algorithms known in several interesting regimes of parameters. Unfortunately, it has also been understood that these problems become intractable in large dimensions, necessitating exponential sample complexity. Motivated by the exponential lower bounds for general distributions as well as the ubiquity of Markov random fields (MRFs) in the modeling of high-dimensional distributions, we initiate the study of distribution testing on structured multivariate distributions, and in particular, the prototypical example of MRFs: the Ising Model. We demonstrate that, in this structured setting, we can avoid the curse of dimensionality, obtaining sample, and time efficient testers for independence and goodness-of-fit. One of the key technical challenges we face along the way is bounding the variance of functions of the Ising model. 
520 |a National Science Foundation (U.S.) (Grants CCF-1551875, CCF-1617730, CCF-1650733) 
520 |a United States. Office of Naval Research (Grant N00014-12-1-0999) 
546 |a en 
655 7 |a Article 
773 |t 10.1109/TIT.2019.2932255 
773 |t IEEE Transactions on Information Theory