Plasmon-emitter interactions at the nanoscale

Plasmon-emitter interactions are of central importance in modern nanoplasmonics and are generally maximal at short emitter-surface separations. However, when the separation falls below 10-20 nm, the classical theory deteriorates progressively due to its neglect of quantum effects such as nonlocality...

Full description

Bibliographic Details
Main Authors: Gonçalves, PAD (Author), Christensen, Thomas (Author), Rivera, Nicholas H. (Author), Jauho, Antti-Pekka (Author), Mortensen, N Asger (Author), Soljacic, Marin (Author)
Other Authors: Massachusetts Institute of Technology. Department of Physics (Contributor)
Format: Article
Language:English
Published: Springer Science and Business Media LLC, 2021-01-15T00:15:04Z.
Subjects:
Online Access:Get fulltext
LEADER 02322 am a22002893u 4500
001 129431
042 |a dc 
100 1 0 |a Gonçalves, PAD  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Physics  |e contributor 
700 1 0 |a Christensen, Thomas  |e author 
700 1 0 |a Rivera, Nicholas H.  |e author 
700 1 0 |a Jauho, Antti-Pekka  |e author 
700 1 0 |a Mortensen, N Asger  |e author 
700 1 0 |a Soljacic, Marin  |e author 
245 0 0 |a Plasmon-emitter interactions at the nanoscale 
260 |b Springer Science and Business Media LLC,   |c 2021-01-15T00:15:04Z. 
856 |z Get fulltext  |u https://hdl.handle.net/1721.1/129431 
520 |a Plasmon-emitter interactions are of central importance in modern nanoplasmonics and are generally maximal at short emitter-surface separations. However, when the separation falls below 10-20 nm, the classical theory deteriorates progressively due to its neglect of quantum effects such as nonlocality, electronic spill-out, and Landau damping. Here we show how this neglect can be remedied in a unified theoretical treatment of mesoscopic electrodynamics incorporating Feibelman d-parameters. Our approach incorporates nonclassical resonance shifts and surface-enabled Landau damping-a nonlocal damping effect-which have a dramatic impact on the amplitude and spectral distribution of plasmon-emitter interactions. We consider a broad array of plasmon-emitter interactions ranging from dipolar and multipolar spontaneous emission enhancement, to plasmon-assisted energy transfer and enhancement of two-photon transitions. The formalism gives a complete account of both plasmons and plasmon-emitter interactions at the nanoscale, constituting a simple yet rigorous platform to include nonclassical effects in plasmon-enabled nanophotonic phenomena. ©2020, The Author(s). 
520 |a Danish Council for Independent Research (Grant No. DFF-6108-00667) 
520 |a DOE Computational Science Graduate Fellowship (CSGF) (DE-FG02-97ER25308) 
520 |a VILLUM FONDEN Grant (16498) 
520 |a Independent Research Fund Denmark Grant (7079-00043B). 
520 |a Army Research Office - Inst. for Soldier Nanotechnologies (W911NF-18-2-0048) 
520 |a MRSEC Program of the NSF (DMR-1419807) 
546 |a en 
655 7 |a Article 
773 |t Nature Communications