Summary: | We propose a new method for simplifying semidefinite programs (SDP) inspired by symmetry reduction. Specifically, we show if an orthogonal projection map satisfies certain invariance conditions, restricting to its range yields an equivalent primal-dual pair over a lower-dimensional symmetric cone-namely, the cone-of-squares of a Jordan subalgebra of symmetric matrices. We present a simple algorithm for minimizing the rank of this projection and hence the dimension of this subalgebra. We also show that minimizing rank optimizes the direct-sum decomposition of the algebra into simple ideals, yielding an optimal "block-diagonalization" of the SDP. Finally, we give combinatorial versions of our algorithm that execute at reduced computational cost and illustrate effectiveness of an implementation on examples. Through the theory of Jordan algebras, the proposed method easily extends to linear and second-order-cone programming and, more generally, symmetric cone optimization.
|