High Li+ and Mg2+ Conductivity in a Cu-Azolate Metal-Organic Framework

A Cu-azolate metal-organic framework (MOF) uptakes stoichiometric loadings of Groups 1 and 2 metal halides, demonstrating efficient reversible release and reincorporation of immobilized anions within the framework. Ion-pairing interactions lead to anion-dependent Li+ and Mg2+ transport in Cu4(ttpm)2...

Full description

Bibliographic Details
Main Authors: Miner, Elise Marie (Author), Park, Sarah Sunah (Author), Dinca, Mircea (Author)
Other Authors: Massachusetts Institute of Technology. Department of Chemistry (Contributor)
Format: Article
Language:English
Published: American Chemical Society (ACS), 2020-10-26T20:10:45Z.
Subjects:
Online Access:Get fulltext
LEADER 01630 am a22002053u 4500
001 128207
042 |a dc 
100 1 0 |a Miner, Elise Marie  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Chemistry  |e contributor 
700 1 0 |a Park, Sarah Sunah  |e author 
700 1 0 |a Dinca, Mircea  |e author 
245 0 0 |a High Li+ and Mg2+ Conductivity in a Cu-Azolate Metal-Organic Framework 
260 |b American Chemical Society (ACS),   |c 2020-10-26T20:10:45Z. 
856 |z Get fulltext  |u https://hdl.handle.net/1721.1/128207 
520 |a A Cu-azolate metal-organic framework (MOF) uptakes stoichiometric loadings of Groups 1 and 2 metal halides, demonstrating efficient reversible release and reincorporation of immobilized anions within the framework. Ion-pairing interactions lead to anion-dependent Li+ and Mg2+ transport in Cu4(ttpm)2·0.6CuCl2, whose high surface area affords a high density of uniformly distributed mobile metal cations and halide binding sites. The ability to systematically tune the ionic conductivity yields a solid electrolyte with a Mg2+ ion conductivity rivaling the best materials reported to date. This MOF is one of the first in a promising class of frameworks that introduces the opportunity to control the identity, geometry, and distribution of the cation hopping sites, offering a versatile template for application-directed design of solid electrolytes. 
520 |a U.S. Department of Energy, Office of Basic Energy Sciences (Grant DESC0018235) 
520 |a National Science Foundation (Grant 1122374) 
546 |a en 
655 7 |a Article 
773 |t Journal of the American Chemical Society