Entropic optimal transport is maximum-likelihood deconvolution

We give a statistical interpretation of entropic optimal transport by showing that performing maximum-likelihood estimation for Gaussian deconvolution corresponds to calculating a projection with respect to the entropic optimal transport distance. This structural result gives theoretical support for...

Full description

Bibliographic Details
Main Authors: Rigollet, Philippe (Author), Weed, Jonathan (Author)
Other Authors: Massachusetts Institute of Technology. Department of Mathematics (Contributor)
Format: Article
Language:English
Published: Elsevier BV, 2020-08-20T00:59:20Z.
Subjects:
Online Access:Get fulltext
LEADER 00911 am a22001693u 4500
001 126692
042 |a dc 
100 1 0 |a Rigollet, Philippe  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Mathematics  |e contributor 
700 1 0 |a Weed, Jonathan  |e author 
245 0 0 |a Entropic optimal transport is maximum-likelihood deconvolution 
260 |b Elsevier BV,   |c 2020-08-20T00:59:20Z. 
856 |z Get fulltext  |u https://hdl.handle.net/1721.1/126692 
520 |a We give a statistical interpretation of entropic optimal transport by showing that performing maximum-likelihood estimation for Gaussian deconvolution corresponds to calculating a projection with respect to the entropic optimal transport distance. This structural result gives theoretical support for the wide adoption of these tools in the machine learning community. 
546 |a en 
655 7 |a Article 
773 |t Comptes Rendus Mathematique