An infinite sequence of conserved quantities for the cubic Gross-Pitaevskii hierarchy on R

We consider the cubic Gross-Pitaevskii (GP) hierarchy on ℝ, which is an infinite hierarchy of coupled linear inhomogeneous partial differential equations appearing in the derivation of the cubic nonlinear Schrödinger equation from quantum many-particle systems. In this work, we identify an infinite...

Full description

Bibliographic Details
Main Author: Staffilani, Gigliola (Author)
Other Authors: Massachusetts Institute of Technology. Department of Mathematics (Contributor)
Format: Article
Language:English
Published: American Mathematical Society (AMS), 2020-08-19T11:18:55Z.
Subjects:
Online Access:Get fulltext
LEADER 01168 am a22001933u 4500
001 126670
042 |a dc 
100 1 0 |a Staffilani, Gigliola  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Mathematics  |e contributor 
245 0 0 |a An infinite sequence of conserved quantities for the cubic Gross-Pitaevskii hierarchy on R 
260 |b American Mathematical Society (AMS),   |c 2020-08-19T11:18:55Z. 
856 |z Get fulltext  |u https://hdl.handle.net/1721.1/126670 
520 |a We consider the cubic Gross-Pitaevskii (GP) hierarchy on ℝ, which is an infinite hierarchy of coupled linear inhomogeneous partial differential equations appearing in the derivation of the cubic nonlinear Schrödinger equation from quantum many-particle systems. In this work, we identify an infinite sequence of operators which generate infinitely many conserved quantities for solutions of the GP hierarchy. 
520 |a National Science Foundation (U.S.) (Grant DMS-1362509) 
520 |a National Science Foundation (U.S.) (Grant DMS-1462401) 
546 |a en 
655 7 |a Article 
773 |t 10.1090/TRAN/7726 
773 |t Transactions of the American Mathematical Society