Optical analogues to the equatorial Kerr-Newman black hole
Optical analogues to black holes allow the investigation of general relativity in a laboratory setting. Previous works have considered analogues to Schwarzschild black holes in an isotropic coordinate system; the major drawback is that required material properties diverge at the horizon. We present...
Main Authors: | , |
---|---|
Other Authors: | , |
Format: | Article |
Language: | English |
Published: |
Springer Science and Business Media LLC,
2020-08-13T20:01:04Z.
|
Subjects: | |
Online Access: | Get fulltext |
Summary: | Optical analogues to black holes allow the investigation of general relativity in a laboratory setting. Previous works have considered analogues to Schwarzschild black holes in an isotropic coordinate system; the major drawback is that required material properties diverge at the horizon. We present the dielectric permittivity and permeability tensors that exactly reproduce the equatorial Kerr-Newman metric, as well as the gradient-index material that reproduces equatorial Kerr-Newman null geodesics. Importantly, the radial profile of the scalar refractive index is finite along all trajectories except at the point of rotation reversal for counter-rotating geodesics. Construction of these analogues is feasible with available ordinary materials. A finite-difference frequency-domain solver of Maxwell's equations is used to simulate light trajectories around a variety of Kerr-Newman black holes. For reasonably sized experimental systems, ray tracing confirms that null geodesics can be well-approximated in the lab, even when allowing for imperfect construction and experimental error. DOE (Grant DE-SC00012567) |
---|