A fast new algorithm for weak graph regularity

We provide a deterministic algorithm that finds, in ϵ-O(1) n 2 time, an ϵ-regular Frieze-Kannan partition of a graph on n vertices. The algorithm outputs an approximation of a given graph as a weighted sum of ϵ-O(1) many complete bipartite graphs. As a corollary, we give a deterministic algorithm fo...

Full description

Bibliographic Details
Main Authors: Lovász, László Miklós (Author), Zhao, Yufei (Author)
Other Authors: Massachusetts Institute of Technology. Department of Mathematics (Contributor)
Format: Article
Language:English
Published: Cambridge University Press (CUP), 2020-07-14T15:18:41Z.
Subjects:
Online Access:Get fulltext
LEADER 01207 am a22002053u 4500
001 126175
042 |a dc 
100 1 0 |a Lovász, László Miklós  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Mathematics  |e contributor 
700 1 0 |a Zhao, Yufei  |e author 
245 0 0 |a A fast new algorithm for weak graph regularity 
260 |b Cambridge University Press (CUP),   |c 2020-07-14T15:18:41Z. 
856 |z Get fulltext  |u https://hdl.handle.net/1721.1/126175 
520 |a We provide a deterministic algorithm that finds, in ϵ-O(1) n 2 time, an ϵ-regular Frieze-Kannan partition of a graph on n vertices. The algorithm outputs an approximation of a given graph as a weighted sum of ϵ-O(1) many complete bipartite graphs. As a corollary, we give a deterministic algorithm for estimating the number of copies of H in an n-vertex graph G up to an additive error of at most ϵn v(H), in time ϵ-O H(1) n 2 
520 |a National Science Foundation (U.S.). Postdoctoral Fellowship (Award DMS 1705204) 
520 |a National Science Foundation (U.S.) (Award DMS 1362326) 
546 |a en 
655 7 |a Article 
773 |t 10.1017/S0963548319000075 
773 |t Combinatorics, probability & computing