Spherically symmetric random permutations

We consider random permutations which are spherically symmetric with respect to a metric on the symmetric group Sn and are consistent as n varies. The extreme infinitely spherically symmetric permutation-valued processes are identified for the Hamming, Kendall-tau and Cayley metrics. The proofs in a...

Full description

Bibliographic Details
Main Authors: Gnedin, Alexander (Author), Gorin, Vadim (Author)
Other Authors: Massachusetts Institute of Technology. Department of Mathematics (Contributor)
Format: Article
Language:English
Published: Wiley, 2020-06-23T18:00:43Z.
Subjects:
Online Access:Get fulltext
LEADER 01011 am a22002053u 4500
001 125938
042 |a dc 
100 1 0 |a Gnedin, Alexander  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Mathematics  |e contributor 
700 1 0 |a Gorin, Vadim  |e author 
245 0 0 |a Spherically symmetric random permutations 
260 |b Wiley,   |c 2020-06-23T18:00:43Z. 
856 |z Get fulltext  |u https://hdl.handle.net/1721.1/125938 
520 |a We consider random permutations which are spherically symmetric with respect to a metric on the symmetric group Sn and are consistent as n varies. The extreme infinitely spherically symmetric permutation-valued processes are identified for the Hamming, Kendall-tau and Cayley metrics. The proofs in all three cases are based on a unified approach through stochastic monotonicity. 
520 |a NSF (grant DMS-1407562) 
520 |a NSF (grant DMS‐1664619) 
546 |a en 
655 7 |a Article 
773 |t 10.1002/RSA.20847 
773 |t Random Structures & Algorithms