|
|
|
|
LEADER |
02702 am a22002173u 4500 |
001 |
125934 |
042 |
|
|
|a dc
|
100 |
1 |
0 |
|a Jain, Sheetal Kumar
|e author
|
100 |
1 |
0 |
|a Massachusetts Institute of Technology. Department of Chemistry
|e contributor
|
100 |
1 |
0 |
|a Francis Bitter Magnet Laboratory
|q (Massachusetts Institute of Technology)
|e contributor
|
700 |
1 |
0 |
|a Mathies, Guinevere
|e author
|
700 |
1 |
0 |
|a Griffin, Robert Guy
|e author
|
245 |
0 |
0 |
|a Off-resonance NOVEL
|
260 |
|
|
|b AIP Publishing,
|c 2020-06-23T17:57:45Z.
|
856 |
|
|
|z Get fulltext
|u https://hdl.handle.net/1721.1/125934
|
520 |
|
|
|a Dynamic nuclear polarization (DNP) is theoretically able to enhance the signal in nuclear magnetic resonance (NMR) experiments by a factor γ[subscript e]/γ[subscript n], where γ's are the gyromagnetic ratios of an electron and a nuclear spin. However, DNP enhancements currently achieved in high-field, high-resolution biomolecular magic-angle spinning NMR are well below this limit because the continuous-wave DNP mechanisms employed in these experiments scale as ω[superscript -n over subscript 0] where n ∼ 1-2. In pulsed DNP methods, such as nuclear orientation via electron spin-locking (NOVEL), the DNP efficiency is independent of the strength of the main magnetic field. Hence, these methods represent a viable alternative approach for enhancing nuclear signals. At 0.35 T, the NOVEL scheme was demonstrated to be efficient in samples doped with stable radicals, generating [superscript 1]H NMR enhancements of ∼430. However, an impediment in the implementation of NOVEL at high fields is the requirement of sufficient microwave power to fulfill the on-resonance matching condition, ω0I = ω1S, where ω[subscript 0I] and ω[subscript 1S] are the nuclear Larmor and electron Rabi frequencies, respectively. Here, we exploit a generalized matching condition, which states that the effective Rabi frequency, ω[superscript eff over subscript 1S], matches ω[subscript 0I]. By using this generalized off-resonance matching condition, we generate [superscript 1]H NMR signal enhancement factors of 266 (∼70% of the on-resonance NOVEL enhancement) with ω[subscript 1S]/2π = 5 MHz. We investigate experimentally the conditions for optimal transfer of polarization from electrons to [superscript 1]H both for the NOVEL mechanism and the solid-effect mechanism and provide a unified theoretical description for these two historically distinct forms of DNP.
|
520 |
|
|
|a National Institutes of Biomedical Imaging and Bioengineering (grant nos. EB-002804 and EB-002026)
|
546 |
|
|
|a en
|
655 |
7 |
|
|a Article
|
773 |
|
|
|t 10.1063/1.5000528
|
773 |
|
|
|t Journal of Chemical Physics
|