Excised linear introns regulate growth in yeast

Spliceosomal introns are ubiquitous non-coding RNAs that are typically destined for rapid debranching and degradation. Here we describe 34 excised introns in Saccharomyces cerevisiae that-despite being rapidly degraded in log-phase growth-accumulate as linear RNAs under either saturated-growth condi...

Full description

Bibliographic Details
Main Authors: Morgan, Jeffrey T. (Jeffrey Thomas) (Author), Bartel, David (Author), Fink, Gerald R (Author)
Other Authors: Whitehead Institute for Biomedical Research (Contributor), Massachusetts Institute of Technology. Department of Biology (Contributor)
Format: Article
Language:English
Published: Springer Nature, 2020-05-15T12:49:32Z.
Subjects:
Online Access:Get fulltext
Description
Summary:Spliceosomal introns are ubiquitous non-coding RNAs that are typically destined for rapid debranching and degradation. Here we describe 34 excised introns in Saccharomyces cerevisiae that-despite being rapidly degraded in log-phase growth-accumulate as linear RNAs under either saturated-growth conditions or other stresses that cause prolonged inhibition of TORC1, which is a key integrator of growth signalling. Introns that become stabilized remain associated with components of the spliceosome and differ from other spliceosomal introns in having a short distance between their lariat branch point and 3' splice site, which is necessary and sufficient for their stabilization. Deletion of these unusual introns is disadvantageous in saturated conditions and causes aberrantly high growth rates in yeast that are chronically challenged with the TORC1 inhibitor rapamycin. The reintroduction of native or engineered stable introns suppresses this aberrant rapamycin response. Thus, excised introns function within the TOR growth-signalling network of S. cerevisiae and, more generally, excised spliceosomal introns can have biological functions. Keywords: Non-coding RNAs; RNA; TOR signalling; Transcriptomics
NIH (Grant GM035010)
NIH (Grant GM118135)