Fluctuations of particle systems determined by Schur generating functions

We develop a new toolbox for the analysis of the global behavior of stochastic discrete particle systems. We introduce and study the notion of the Schur generating function of a random discrete configuration. Our main result provides a Central Limit Theorem (CLT) for such a configuration given certa...

Full description

Bibliographic Details
Main Authors: Bufetov, Alexey (Author), Gorin, Vadim (Author)
Other Authors: Massachusetts Institute of Technology. Department of Mathematics (Contributor)
Format: Article
Language:English
Published: Elsevier BV, 2020-03-27T17:36:32Z.
Subjects:
Online Access:Get fulltext
LEADER 01339 am a22001813u 4500
001 124392
042 |a dc 
100 1 0 |a Bufetov, Alexey  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Mathematics  |e contributor 
700 1 0 |a Gorin, Vadim  |e author 
245 0 0 |a Fluctuations of particle systems determined by Schur generating functions 
260 |b Elsevier BV,   |c 2020-03-27T17:36:32Z. 
856 |z Get fulltext  |u https://hdl.handle.net/1721.1/124392 
520 |a We develop a new toolbox for the analysis of the global behavior of stochastic discrete particle systems. We introduce and study the notion of the Schur generating function of a random discrete configuration. Our main result provides a Central Limit Theorem (CLT) for such a configuration given certain conditions on the Schur generating function. As applications of this approach, we prove CLT's for several probabilistic models coming from asymptotic representation theory and statistical physics, including random lozenge and domino tilings, non-intersecting random walks, decompositions of tensor products of representations of unitary groups. Keywords: Schur functions; Asymptotic representation theory; Random tilings 
520 |a National Science Foundation (U.S.) (Grant DMS-1407562) 
546 |a en 
655 7 |a Article 
773 |t Advances in Mathematics