Error-corrected quantum sensing

Quantum metrology has many important applications in science and technology, ranging from frequency spectroscopy to gravitational wave detection. Quantum mechanics imposes a fundamental limit on measurement precision, called the Heisenberg limit, which can be achieved for noiseless quantum systems,...

Full description

Bibliographic Details
Main Authors: Zhou, Sisi (Author), Layden, David (Author), Zhang, Mengzhen (Author), Preskill, John (Author), Cappellaro, Paola (Author), Jiang, Liang (Author)
Other Authors: Massachusetts Institute of Technology. Department of Nuclear Science and Engineering (Contributor)
Format: Article
Language:English
Published: Society of Photo-Optical Instrumentation Engineers (SPIE), 2020-03-26T14:53:31Z.
Subjects:
Online Access:Get fulltext
LEADER 03459 am a22004213u 4500
001 124357
042 |a dc 
100 1 0 |a Zhou, Sisi  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Nuclear Science and Engineering  |e contributor 
700 1 0 |a Layden, David  |e author 
700 1 0 |a Zhang, Mengzhen  |e author 
700 1 0 |a Preskill, John  |e author 
700 1 0 |a Cappellaro, Paola  |e author 
700 1 0 |a Jiang, Liang  |e author 
245 0 0 |a Error-corrected quantum sensing 
260 |b Society of Photo-Optical Instrumentation Engineers (SPIE),   |c 2020-03-26T14:53:31Z. 
856 |z Get fulltext  |u https://hdl.handle.net/1721.1/124357 
520 |a Quantum metrology has many important applications in science and technology, ranging from frequency spectroscopy to gravitational wave detection. Quantum mechanics imposes a fundamental limit on measurement precision, called the Heisenberg limit, which can be achieved for noiseless quantum systems, but is not achievable in general for systems subject to noise. Here we study how measurement precision can be enhanced through quantum error correction, a general method for protecting a quantum system from the damaging effects of noise. We find a necessary and sufficient condition for achieving the Heisenberg limit using quantum probes subject to Markovian noise, assuming that noiseless ancilla systems are available, and that fast, accurate quantum processing can be performed. When the sufficient condition is satisfied, the quantum error-correcting code achieving the best possible precision can be found by solving a semidefinite program. We also show that noiseless ancilla are not needed when the signal Hamiltonian and the error operators commute. Finally we provide two explicit, archetypal examples of quantum sensors: qubits undergoing dephasing and a lossy bosonic mode. 
520 |a U.S. Army Research Laboratory. Center for Distributed Quantum Information (W911NF-15-2-0067) 
520 |a U.S. Army Research Laboratory. Center for Distributed Quantum Information (W911NF-18-2-0237) 
520 |a United States. Army Research Office (W911NF-18-1-0020) 
520 |a United States. Army Research Office (W911NF-18-1-0212) 
520 |a United States. Army Research Office (W911NF-14-1-0011) 
520 |a United States. Army Research Office (W911NF-14-1-0563) 
520 |a Alfred P. Sloan Foundation (BR2013-049) 
520 |a Packard Foundation (2013-39273) 
520 |a United States. Air Force Office of Scientific Research. Multidisciplinary University Research Initiative (FA9550-14-1-0052) 
520 |a United States. Department of Energy ((DE-SC0019406) 
520 |a National Science Foundation (U.S.) (EFMA-1640959) 
520 |a National Science Foundation (U.S.) (EFRIACQUIRE 1641064) 
520 |a United States. Air Force Office of Scientific Research. Multidisciplinary University Research Initiative (EECS1702716) 
520 |a United States. Air Force Office of Scientific Research. Multidisciplinary University Research Initiative (FA9550-15-1-0015) 
520 |a United States. Army Research Office. Multidisciplinary University Research Initiative (W911NF-16-1-0349) 
520 |a United States. Army Research Office. Multidisciplinary University Research Initiative (W911NF-15-1-0548) 
546 |a en 
655 7 |a Article 
773 |t 10.1117/12.2511587 
773 |t Proceedings of the Society of Photo-optical Instrumentation Engineers