Molecular beam epitaxy growth of antiferromagnetic Kagome metal FeSn

FeSn is a room-temperature antiferromagnet expected to host Dirac fermions in its electronic structure. The interplay of the magnetic degree of freedom and the Dirac fermions makes FeSn an attractive platform for spintronics and electronic devices. While stabilization of thin film FeSn is needed for...

Full description

Bibliographic Details
Main Authors: Inoue, Hisashi (Author), Han, Minyong (Author), Ye, Linda (Author), Suzuki, Takehito (Author), Checkelsky, Joseph (Author)
Other Authors: Massachusetts Institute of Technology. Department of Physics (Contributor)
Format: Article
Language:English
Published: AIP Publishing, 2019-12-19T23:08:34Z.
Subjects:
Online Access:Get fulltext
LEADER 01800 am a22002293u 4500
001 123311
042 |a dc 
100 1 0 |a Inoue, Hisashi  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Physics  |e contributor 
700 1 0 |a Han, Minyong  |e author 
700 1 0 |a Ye, Linda  |e author 
700 1 0 |a Suzuki, Takehito  |e author 
700 1 0 |a Checkelsky, Joseph  |e author 
245 0 0 |a Molecular beam epitaxy growth of antiferromagnetic Kagome metal FeSn 
260 |b AIP Publishing,   |c 2019-12-19T23:08:34Z. 
856 |z Get fulltext  |u https://hdl.handle.net/1721.1/123311 
520 |a FeSn is a room-temperature antiferromagnet expected to host Dirac fermions in its electronic structure. The interplay of the magnetic degree of freedom and the Dirac fermions makes FeSn an attractive platform for spintronics and electronic devices. While stabilization of thin film FeSn is needed for the development of such devices, there exist no previous reports of epitaxial growth of single crystalline FeSn. Here, we report the realization of epitaxial thin films of FeSn (001) grown by molecular beam epitaxy on single crystal SrTiO3 (111) substrates. By combining X-ray diffraction, electrical transport, and torque magnetometry measurements, we demonstrate the high quality of these films with the residual resistivity ratio ρ xx (300 K) / ρ xx (2 K) = 24 and antiferromagnetic ordering at T N = 353 K. These developments open a pathway to manipulate the Dirac fermions in FeSn by both magnetic interactions and the electronic field effect for use in antiferromagnetic spintronics devices. 
520 |a Gordon and Betty Moore Foundation (Grant GBMF3848) 
520 |a United States. Army Research Office (Grant W911NF-16-1-0034) 
546 |a en 
655 7 |a Article 
773 |t Applied Physics Letters