hdm: High-Dimensional Metrics

In this article the package High-dimensional Metrics hdm is introduced. It is a collection of statistical methods for estimation and quantification of uncertainty in high-dimensional approximately sparse models. It focuses on providing confidence intervals and significance testing for (possibly many...

Full description

Bibliographic Details
Main Authors: Chernozhukov, Victor V (Author), Hansen, Chris (Author), Spindler, Martin (Author)
Other Authors: Massachusetts Institute of Technology. Department of Economics (Contributor)
Format: Article
Language:English
Published: The R Foundation, 2019-11-07T19:05:54Z.
Subjects:
Online Access:Get fulltext
LEADER 01731 am a22001813u 4500
001 122795
042 |a dc 
100 1 0 |a Chernozhukov, Victor V  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Economics  |e contributor 
700 1 0 |a Hansen, Chris  |e author 
700 1 0 |a Spindler, Martin  |e author 
245 0 0 |a hdm: High-Dimensional Metrics 
260 |b The R Foundation,   |c 2019-11-07T19:05:54Z. 
856 |z Get fulltext  |u https://hdl.handle.net/1721.1/122795 
520 |a In this article the package High-dimensional Metrics hdm is introduced. It is a collection of statistical methods for estimation and quantification of uncertainty in high-dimensional approximately sparse models. It focuses on providing confidence intervals and significance testing for (possibly many) low-dimensional subcomponents of the high-dimensional parameter vector. Efficient estimators and uniformly valid confidence intervals for regression coefficients on target variables (e.g., treatment or policy variable) in a high-dimensional approximately sparse regression model, for average treatment effect (ATE) and average treatment effect for the treated (ATET), as well for extensions of these parameters to the endogenous setting are provided. Theory grounded, data-driven methods for selecting the penalization parameter in Lasso regressions under heteroscedastic and non-Gaussian errors are implemented. Moreover, joint/ simultaneous confidence intervals for regression coefficients of a high-dimensional sparse regression are implemented. Data sets which have been used in the literature and might be useful for classroom demonstration and for testing new estimators are included. 
546 |a en 
655 7 |a Article 
773 |t R Journal