Toric bases for 6D F-theory models

We find all smooth toric bases that support elliptically fiber ed Calabi-Yau threefolds, using the intersection structure of the irredu cible effective divisors on the base. These bases can be used for F-theory constructions of six-di mensional quantum supergrav- ity theories. There are 61,539 disti...

Full description

Bibliographic Details
Main Authors: Morrison, David R. (Author), Taylor, Washington (Author)
Other Authors: Massachusetts Institute of Technology. Department of Physics (Contributor)
Format: Article
Language:English
Published: Wiley, 2019-06-21T16:37:45Z.
Subjects:
Online Access:Get fulltext
LEADER 01459 am a22001813u 4500
001 121373
042 |a dc 
100 1 0 |a Morrison, David R.  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Physics  |e contributor 
700 1 0 |a Taylor, Washington  |e author 
245 0 0 |a Toric bases for 6D F-theory models 
260 |b Wiley,   |c 2019-06-21T16:37:45Z. 
856 |z Get fulltext  |u https://hdl.handle.net/1721.1/121373 
520 |a We find all smooth toric bases that support elliptically fiber ed Calabi-Yau threefolds, using the intersection structure of the irredu cible effective divisors on the base. These bases can be used for F-theory constructions of six-di mensional quantum supergrav- ity theories. There are 61,539 distinct possible toric base s. The associated 6D supergravity theories have a number of tensor multiplets ranging from 0 to 193. For each base an explicit Weierstrass parameterization can be determined i n terms of the toric data. The toric counting of parameters matches with the gravitationa l anomaly constraint on mass- less fields. For bases associated with theories having a larg e number of tensor multiplets, there is a large non-Higgsable gauge group containing multi ple irreducible gauge group fac- tors, particularly those having algebras e₈, f₄, and g₂ ⊕ su (2) with minimal (non-Higgsable) matter. 
546 |a en 
655 7 |a Article 
773 |t 10.1002/prop.201200086 
773 |t Fortschritte der Physik