Event generator tuning using Bayesian optimization

Monte Carlo event generators contain a large number of parameters that must be determined by comparing the output of the generator with experimental data. Generating enough events with a fixed set of parameter values to enable making such a comparison is extremely CPU intensive, which prohibits perf...

Full description

Bibliographic Details
Main Authors: Ilten, P. (Author), Williams, M. (Author), Yang, Y. (Author), Ilten, Philip J (Contributor), Williams, Michael (Contributor), Yang, Yang (Contributor)
Other Authors: Massachusetts Institute of Technology. Laboratory for Nuclear Science (Contributor)
Format: Article
Language:English
Published: IOP Publishing, 2019-03-01T16:40:11Z.
Subjects:
Online Access:Get fulltext
LEADER 01925 am a22002653u 4500
001 120587
042 |a dc 
100 1 0 |a Ilten, P.  |e author 
100 1 0 |a Massachusetts Institute of Technology. Laboratory for Nuclear Science  |e contributor 
100 1 0 |a Ilten, Philip J  |e contributor 
100 1 0 |a Williams, Michael  |e contributor 
100 1 0 |a Yang, Yang  |e contributor 
700 1 0 |a Williams, M.  |e author 
700 1 0 |a Yang, Y.  |e author 
700 1 0 |a Ilten, Philip J  |e author 
700 1 0 |a Williams, Michael  |e author 
700 1 0 |a Yang, Yang  |e author 
245 0 0 |a Event generator tuning using Bayesian optimization 
260 |b IOP Publishing,   |c 2019-03-01T16:40:11Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/120587 
520 |a Monte Carlo event generators contain a large number of parameters that must be determined by comparing the output of the generator with experimental data. Generating enough events with a fixed set of parameter values to enable making such a comparison is extremely CPU intensive, which prohibits performing a simple brute-force grid-based tuning of the parameters. Bayesian optimization is a powerful method designed for such black-box tuning applications. In this article, we show that Monte Carlo event generator parameters can be accurately obtained using Bayesian optimization and minimal expert-level physics knowledge. A tune of the PYTHIA 8 event generator using e⁺e⁻ events, where 20 parameters are optimized, can be run on a modern laptop in just two days. Combining the Bayesian optimization approach with expert knowledge should enable producing better tunes in the future, by making it faster and easier to study discrepancies between Monte Carlo and experimental data. 
520 |a United States. Department of Energy (Grant DE-SC0010497) 
520 |a United States. Department of Energy (Grant DE-FG02-94ER40818) 
655 7 |a Article 
773 |t Journal of Instrumentation