Nano-beam and nano-target effects in ion radiation

Full three dimensional (3D) simulations of ion implantation are necessary in a wide range of nanoscience and nanotechnology applications to capture the increasing effect of ion leakage out of surfaces. Using a recently developed 3D Monte Carlo simulation code IM3D, we first quantify the relative err...

Full description

Bibliographic Details
Main Authors: Berggren, Karl K. (Author), Yang, Yang (Contributor), Li, Yonggang (Contributor), Short, Michael P (Contributor), Kim, Chungsoo (Contributor), Li, Ju (Contributor)
Other Authors: Massachusetts Institute of Technology. Department of Nuclear Science and Engineering (Contributor), Massachusetts Institute of Technology. Research Laboratory of Electronics (Contributor), Short, Michael Philip (Contributor)
Format: Article
Language:English
Published: Royal Society of Chemistry, 2019-02-13T18:08:17Z.
Subjects:
Online Access:Get fulltext
LEADER 02667 am a22003613u 4500
001 120357
042 |a dc 
100 1 0 |a Berggren, Karl K.  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Nuclear Science and Engineering  |e contributor 
100 1 0 |a Massachusetts Institute of Technology. Research Laboratory of Electronics  |e contributor 
100 1 0 |a Short, Michael Philip  |e contributor 
100 1 0 |a Yang, Yang  |e contributor 
100 1 0 |a Li, Yonggang  |e contributor 
100 1 0 |a Short, Michael P  |e contributor 
100 1 0 |a Kim, Chungsoo  |e contributor 
100 1 0 |a Li, Ju  |e contributor 
700 1 0 |a Yang, Yang  |e author 
700 1 0 |a Li, Yonggang  |e author 
700 1 0 |a Short, Michael P  |e author 
700 1 0 |a Kim, Chungsoo  |e author 
700 1 0 |a Li, Ju  |e author 
245 0 0 |a Nano-beam and nano-target effects in ion radiation 
260 |b Royal Society of Chemistry,   |c 2019-02-13T18:08:17Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/120357 
520 |a Full three dimensional (3D) simulations of ion implantation are necessary in a wide range of nanoscience and nanotechnology applications to capture the increasing effect of ion leakage out of surfaces. Using a recently developed 3D Monte Carlo simulation code IM3D, we first quantify the relative error of the 1D approach in three applications of nano-scale ion implantation: (1) nano-beam for nitrogen-vacancy (NV) center creation, (2) implantation of nanowires to fabricate p-n junctions, and (3) irradiation of nano-pillars for small-scale mechanical testing of irradiated materials. Because the 1D approach fails to consider the exchange and leakage of ions from boundaries, its relative error increases dramatically as the beam/target size shrinks. Lastly, the "Bragg peak" phenomenon, where the maximum radiation dose occurs at a finite depth away from the surface, relies on the assumption of broad beams. We discovered a topological transition of the point-defect or defect-cluster distribution isosurface when one varies the beam width, in agreement with a previous focused helium ion beam irradiation experiment. We conclude that full 3D simulations are necessary if either the beam or the target size is comparable or below the SRIM longitudinal ion range. 
520 |a National Science Foundation (U.S.) (Grant DMR-1120901) 
520 |a National Natural Science Foundation (China) (11475215) 
520 |a National Natural Science Foundation (China) (11775254) 
520 |a Gordon and Betty Moore Foundation 
520 |a Chinese Academy of Sciences. Youth Innovation Promotion Association 
546 |a en_US 
655 7 |a Article 
773 |t Nanoscale