Cotangent sums, quantum modular forms, and the generalized Riemann hypothesis

We show that an asymptotic property of the determinants of certain matrices whose entries are finite sums of cotangents with rational arguments is equivalent to the GRH for odd Dirichlet characters. This is then connected to the existence of certain quantum modular forms related to Maass Eisenstein...

Full description

Bibliographic Details
Main Authors: Zagier, Don (Author), Lewis, John B (Contributor)
Format: Article
Language:English
Published: Springer International Publishing, 2018-12-20T18:26:12Z.
Subjects:
Online Access:Get fulltext
LEADER 00837 am a22001693u 4500
001 119799
042 |a dc 
100 1 0 |a Zagier, Don  |e author 
100 1 0 |a Lewis, John B  |e contributor 
700 1 0 |a Lewis, John B  |e author 
245 0 0 |a Cotangent sums, quantum modular forms, and the generalized Riemann hypothesis 
260 |b Springer International Publishing,   |c 2018-12-20T18:26:12Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/119799 
520 |a We show that an asymptotic property of the determinants of certain matrices whose entries are finite sums of cotangents with rational arguments is equivalent to the GRH for odd Dirichlet characters. This is then connected to the existence of certain quantum modular forms related to Maass Eisenstein series. 
546 |a en 
655 7 |a Article 
773 |t Research in the Mathematical Sciences