Accurate computation of moist available potential energy with the Munkres algorithm

The moist available potential energy (MAPE) of a domain of air is defined as the maximum amount of kinetic energy that can be released through reversible adiabatic motions of its air parcels. The MAPE can be calculated using a parcel‐moving algorithm that finds the minimum enthalpy state for a given...

Full description

Bibliographic Details
Main Authors: Stansifer, Eric Marshall (Contributor), O'Gorman, Paul (Contributor), Holt, Jareth Ian (Contributor)
Other Authors: Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences (Contributor)
Format: Article
Language:English
Published: Wiley Blackwell, 2018-12-20T15:06:46Z.
Subjects:
Online Access:Get fulltext
LEADER 01835 am a22002293u 4500
001 119795
042 |a dc 
100 1 0 |a Stansifer, Eric Marshall  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences  |e contributor 
100 1 0 |a O'Gorman, Paul  |e contributor 
100 1 0 |a Stansifer, Eric Marshall  |e contributor 
100 1 0 |a O'Gorman, Paul  |e contributor 
100 1 0 |a Holt, Jareth Ian  |e contributor 
700 1 0 |a O'Gorman, Paul  |e author 
700 1 0 |a Holt, Jareth Ian  |e author 
245 0 0 |a Accurate computation of moist available potential energy with the Munkres algorithm 
260 |b Wiley Blackwell,   |c 2018-12-20T15:06:46Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/119795 
520 |a The moist available potential energy (MAPE) of a domain of air is defined as the maximum amount of kinetic energy that can be released through reversible adiabatic motions of its air parcels. The MAPE can be calculated using a parcel‐moving algorithm that finds the minimum enthalpy state for a given set of thermodynamic assumptions. However, the parcel‐moving algorithms proposed previously do not always find the minimum enthalpy state. In this article, we apply the Munkres algorithm to find the exact minimum enthalpy state and compare this exact algorithm with four inexact algorithms, including a new divide‐and‐conquer algorithm. The divide‐and‐conquer algorithm performs well in practice, while being simpler and faster than the Munkres algorithm, and it is recommended for future calculation of MAPE when the exact result is not required. Keywords: Poisson Equation, Laplacian growth, Diffusion Field, analytic solution, ramified network, Golden ratio 
546 |a en_US 
655 7 |a Article 
773 |t Quarterly Journal of the Royal Meteorological Society