Physical implementation of a Majorana fermion surface code for fault-tolerant quantum computation

We propose a physical realization of a commuting Hamiltonian of interacting Majorana fermions realizing Z2topological order, using an array of Josephson-coupled topological superconductor islands. The required multi-body interaction Hamiltonian is naturally generated by a combination of charging ene...

Full description

Bibliographic Details
Main Authors: Vijay, Sagar (Contributor), Fu, Liang (Contributor)
Other Authors: Massachusetts Institute of Technology. Department of Physics (Contributor)
Format: Article
Language:English
Published: IOP Publishing, 2018-12-17T16:38:40Z.
Subjects:
Online Access:Get fulltext
LEADER 01809 am a22002053u 4500
001 119660
042 |a dc 
100 1 0 |a Vijay, Sagar  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Physics  |e contributor 
100 1 0 |a Vijay, Sagar  |e contributor 
100 1 0 |a Fu, Liang  |e contributor 
700 1 0 |a Fu, Liang  |e author 
245 0 0 |a Physical implementation of a Majorana fermion surface code for fault-tolerant quantum computation 
260 |b IOP Publishing,   |c 2018-12-17T16:38:40Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/119660 
520 |a We propose a physical realization of a commuting Hamiltonian of interacting Majorana fermions realizing Z2topological order, using an array of Josephson-coupled topological superconductor islands. The required multi-body interaction Hamiltonian is naturally generated by a combination of charging energy induced quantum phase-slips on the superconducting islands and electron tunneling between islands. Our setup improves on a recent proposal for implementing a Majorana fermion surface code (Vijay et al 2015 Phys. Rev. X 5 041038), a 'hybrid' approach to fault-tolerant quantum computation that combines (1) the engineering of a stabilizer Hamiltonian with a topologically ordered ground state with (2) projective stabilizer measurements to implement error correction and a universal set of logical gates. Our hybrid strategy has advantages over the traditional surface code architecture in error suppression and single-step stabilizer measurements, and is widely applicable to implementing stabilizer codes for quantum computation. 
520 |a Packard Foundation 
520 |a United States. Department of Energy. Division of Materials Sciences and Engineering (Award No. de-sc0010526) 
655 7 |a Article 
773 |t Physica Scripta