Multi-scale magnetic mapping of serpentinite carbonation

Peridotite carbonation represents a critical step within the long-term carbon cycle by sequestering volatile CO₂ in solid carbonate. This has been proposed as one potential pathway to mitigate the effects of greenhouse gas release. Most of our current understanding of reaction mechanisms is based on...

Full description

Bibliographic Details
Main Authors: Tominaga, Masako (Author), Beinlich, Andreas (Author), Tivey, Maurice A. (Author), Hampton, Brian A. (Author), Harigane, Yumiko (Author), Lima, Eduardo A. (Contributor), Weiss, Benjamin P (Contributor)
Other Authors: Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences (Contributor)
Format: Article
Language:English
Published: Springer Nature, 2018-11-06T17:19:13Z.
Subjects:
Online Access:Get fulltext
LEADER 02078 am a22002653u 4500
001 118921
042 |a dc 
100 1 0 |a Tominaga, Masako  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences  |e contributor 
100 1 0 |a Lima, Eduardo A.  |e contributor 
100 1 0 |a Weiss, Benjamin P  |e contributor 
700 1 0 |a Beinlich, Andreas  |e author 
700 1 0 |a Tivey, Maurice A.  |e author 
700 1 0 |a Hampton, Brian A.  |e author 
700 1 0 |a Harigane, Yumiko  |e author 
700 1 0 |a Lima, Eduardo A.  |e author 
700 1 0 |a Weiss, Benjamin P  |e author 
245 0 0 |a Multi-scale magnetic mapping of serpentinite carbonation 
260 |b Springer Nature,   |c 2018-11-06T17:19:13Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/118921 
520 |a Peridotite carbonation represents a critical step within the long-term carbon cycle by sequestering volatile CO₂ in solid carbonate. This has been proposed as one potential pathway to mitigate the effects of greenhouse gas release. Most of our current understanding of reaction mechanisms is based on hand specimen and laboratory-scale analyses. Linking laboratory-scale observations to fi eld scale processes remains challenging. Here we present the fi rst geophysical characterization of serpentinite carbonation across scales ranging from km to sub-mm by combining aeromagnetic observations, outcrop- and thin section-scale magnetic mapping. At all scales, magnetic anomalies coherently change across reaction fronts separating assemblages indicative of incipient, intermittent, and fi nal reaction progress. The abundance of magnetic minerals correlates with reaction progress, causing amplitude and wavelength variations in associated magnetic anomalies. This correlation represents a foundation for characterizing the extent and degree of in sity ultramafic rock carbonation in space and time. 
520 |a National Science Foundation (U.S.) (grant DMS-1521765) 
520 |a Thomas F. Peterson, Jr (generous support) 
655 7 |a Article 
773 |t Nature Communications