Age density patterns in patients medical conditions: A clustering approach

This paper presents a data analysis framework to uncover relationships between health conditions, age and sex for a large population of patients. We study a massive heterogeneous sample of 1.7 million patients in Brazil, containing 47 million of health records with detailed medical conditions for vi...

Full description

Bibliographic Details
Main Authors: Moyano, Luis G. (Author), Alhasoun, Fahad (Contributor), Aleissa, Faisal Saad (Contributor), Alhazzani, May (Contributor), Pinhanez, Claudio S. (Contributor), Gonzalez, Marta C. (Contributor)
Other Authors: Massachusetts Institute of Technology. Department of Civil and Environmental Engineering (Contributor), Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science (Contributor), Massachusetts Institute of Technology. Institute for Data, Systems, and Society (Contributor), Massachusetts Institute of Technology. Computation for Design and Optimization Program (Contributor), Program in Media Arts and Sciences (Massachusetts Institute of Technology) (Contributor)
Format: Article
Language:English
Published: Public Library of Science, 2018-11-05T14:56:25Z.
Subjects:
Online Access:Get fulltext
LEADER 02190 am a22003133u 4500
001 118874
042 |a dc 
100 1 0 |a Moyano, Luis G.  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Civil and Environmental Engineering  |e contributor 
100 1 0 |a Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science  |e contributor 
100 1 0 |a Massachusetts Institute of Technology. Institute for Data, Systems, and Society  |e contributor 
100 1 0 |a Massachusetts Institute of Technology. Computation for Design and Optimization Program  |e contributor 
100 1 0 |a Program in Media Arts and Sciences   |q  (Massachusetts Institute of Technology)   |e contributor 
100 1 0 |a Alhasoun, Fahad  |e contributor 
100 1 0 |a Aleissa, Faisal Saad  |e contributor 
100 1 0 |a Alhazzani, May  |e contributor 
100 1 0 |a Pinhanez, Claudio S.  |e contributor 
100 1 0 |a Gonzalez, Marta C.  |e contributor 
700 1 0 |a Alhasoun, Fahad  |e author 
700 1 0 |a Aleissa, Faisal Saad  |e author 
700 1 0 |a Alhazzani, May  |e author 
700 1 0 |a Pinhanez, Claudio S.  |e author 
700 1 0 |a Gonzalez, Marta C.  |e author 
245 0 0 |a Age density patterns in patients medical conditions: A clustering approach 
260 |b Public Library of Science,   |c 2018-11-05T14:56:25Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/118874 
520 |a This paper presents a data analysis framework to uncover relationships between health conditions, age and sex for a large population of patients. We study a massive heterogeneous sample of 1.7 million patients in Brazil, containing 47 million of health records with detailed medical conditions for visits to medical facilities for a period of 17 months. The findings suggest that medical conditions can be grouped into clusters that share very distinctive densities in the ages of the patients. For each cluster, we further present the ICD-10 chapters within it. Finally, we relate the findings to comorbidity networks, uncovering the relation of the discovered clusters of age densities to comorbidity networks literature. 
655 7 |a Article 
773 |t PLOS Computational Biology