Berry curvature dipole current in the transition metal dichalcogenides family

We study the quantum nonlinear Hall effect in two-dimensional (2D) materials with time-reversal symmetry. When only one mirror line exists, a transverse charge current occurs in the second-order response to an external electric field, as a result of the Berry curvature dipole in momentum space. Cand...

Full description

Bibliographic Details
Main Authors: You, Jhih-Shih (Author), Fang, Shiang (Author), Kaxiras, Efthimios (Author), Low, Tony (Author), Xu, Suyang (Contributor)
Other Authors: Massachusetts Institute of Technology. Department of Physics (Contributor)
Format: Article
Language:English
Published: American Physical Society, 2018-10-05T14:53:00Z.
Subjects:
Online Access:Get fulltext
LEADER 01585 am a22002413u 4500
001 118368
042 |a dc 
100 1 0 |a You, Jhih-Shih  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Physics  |e contributor 
100 1 0 |a Xu, Suyang  |e contributor 
700 1 0 |a Fang, Shiang  |e author 
700 1 0 |a Kaxiras, Efthimios  |e author 
700 1 0 |a Low, Tony  |e author 
700 1 0 |a Xu, Suyang  |e author 
245 0 0 |a Berry curvature dipole current in the transition metal dichalcogenides family 
260 |b American Physical Society,   |c 2018-10-05T14:53:00Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/118368 
520 |a We study the quantum nonlinear Hall effect in two-dimensional (2D) materials with time-reversal symmetry. When only one mirror line exists, a transverse charge current occurs in the second-order response to an external electric field, as a result of the Berry curvature dipole in momentum space. Candidate 2D materials to observe this effect are two-dimensional transition metal dichalcogenides (TMDCs). First, we use an ab initio based tight-binding approach to demonstrate that monolayer T[subscript d]-structure TMDCs exhibit a finite Berry curvature dipole. In the 1H and 1T' phase of TMDCs, we show the emergence of a finite Berry curvature dipole with the application of strain and an electrical displacement field, respectively. 
520 |a National Science Foundation (U.S.) (Grant DMR-1231319) 
520 |a United States. Army Research Office (Award W911NF-14-0247) 
546 |a en 
655 7 |a Article 
773 |t Physical Review B