Pairwise interactions in inertially driven one-dimensional microfluidic crystals

In microfluidic devices, inertia drives particles to focus on a finite number of inertial focusing streamlines. Particles on the same streamline interact to form one-dimensional microfluidic crystals (or "particle trains"). Here we develop an asymptotic theory to describe the pairwise inte...

Full description

Bibliographic Details
Main Authors: Roper, Marcus (Author), Hood, Kaitlyn Tuley (Contributor)
Other Authors: Massachusetts Institute of Technology. Department of Mechanical Engineering (Contributor)
Format: Article
Language:English
Published: American Physical Society, 2018-09-07T14:56:44Z.
Subjects:
Online Access:Get fulltext
LEADER 01573 am a22002053u 4500
001 117665
042 |a dc 
100 1 0 |a Roper, Marcus  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Mechanical Engineering  |e contributor 
100 1 0 |a Hood, Kaitlyn Tuley  |e contributor 
700 1 0 |a Hood, Kaitlyn Tuley  |e author 
245 0 0 |a Pairwise interactions in inertially driven one-dimensional microfluidic crystals 
260 |b American Physical Society,   |c 2018-09-07T14:56:44Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/117665 
520 |a In microfluidic devices, inertia drives particles to focus on a finite number of inertial focusing streamlines. Particles on the same streamline interact to form one-dimensional microfluidic crystals (or "particle trains"). Here we develop an asymptotic theory to describe the pairwise interactions underlying the formation of a one-dimensional crystal. Surprisingly, we show that particles assemble into stable equilibria, analogous to the motion of a damped spring. The damping of the spring is due to inertial focusing forces, and the spring force arises from the interplay of viscous particle-particle and particle-wall interactions. The equilibrium spacing can be represented by a quadratic function in the particle size and therefore can be controlled by tuning the particle radius. 
520 |a National Science Foundation (U.S.) (Award DMS-1606487) 
520 |a University of California, Los Angeles (Dissertation Year Fellowship) 
546 |a en 
655 7 |a Article 
773 |t Physical Review Fluids