Kinetic Simulation of the Logarithmic Creep of Cement

Many amorphous materials display a logarithmic creep behavior, driven by the rare occurrence of complex, hardly detectable, microscopic, structural rearrangements. Following recent developments in experimental techniques and modeling, we develop here a new approach based on transition state theory a...

Full description

Bibliographic Details
Main Authors: Manzano, H. (Author), Del Gado, E. (Author), Masoero, Enrico (Contributor), Ulm, Franz-Josef (Contributor), Yip, Sidney (Contributor), Pellenq, Roland Jm (Contributor)
Other Authors: Massachusetts Institute of Technology. Department of Civil and Environmental Engineering (Contributor), Massachusetts Institute of Technology. Department of Nuclear Science and Engineering (Contributor)
Format: Article
Language:English
Published: American Society of Civil Engineers (ASCE), 2018-08-24T20:11:47Z.
Subjects:
Online Access:Get fulltext
LEADER 01750 am a22002653u 4500
001 117529
042 |a dc 
100 1 0 |a Manzano, H.  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Civil and Environmental Engineering  |e contributor 
100 1 0 |a Massachusetts Institute of Technology. Department of Nuclear Science and Engineering  |e contributor 
100 1 0 |a Masoero, Enrico  |e contributor 
100 1 0 |a Ulm, Franz-Josef  |e contributor 
100 1 0 |a Yip, Sidney  |e contributor 
100 1 0 |a Pellenq, Roland Jm  |e contributor 
700 1 0 |a Del Gado, E.  |e author 
700 1 0 |a Masoero, Enrico  |e author 
700 1 0 |a Ulm, Franz-Josef  |e author 
700 1 0 |a Yip, Sidney  |e author 
700 1 0 |a Pellenq, Roland Jm  |e author 
245 0 0 |a Kinetic Simulation of the Logarithmic Creep of Cement 
260 |b American Society of Civil Engineers (ASCE),   |c 2018-08-24T20:11:47Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/117529 
520 |a Many amorphous materials display a logarithmic creep behavior, driven by the rare occurrence of complex, hardly detectable, microscopic, structural rearrangements. Following recent developments in experimental techniques and modeling, we develop here a new approach based on transition state theory and on activation energies computed from molecular simulations of shear tests. Our results predict the logarithmic creep of an amorphous, model structure of cement at the molecular and meso- scales. We investigate the interplay of cooperative processes at the different length-scales and establish connections with creep phenomena in other materials. © 2013 American Society of Civil Engineers. 
655 7 |a Article 
773 |t Mechanics and Physics of Creep, Shrinkage, and Durability of Concrete