Model for the metal-insulator transition in graphene superlattices and beyond

We propose a two-orbital Hubbard model on an emergent honeycomb lattice to describe the low-energy physics of twisted bilayer graphene. Our model provides a theoretical basis for studying metal-insulator transition, Landau level degeneracy lifting, and unconventional superconductivity that are recen...

Full description

Bibliographic Details
Main Authors: Yuan, Fanqi (Contributor), Fu, Liang (Contributor)
Other Authors: Massachusetts Institute of Technology. Department of Physics (Contributor), Massachusetts Institute of Technology. Materials Systems Laboratory (Contributor)
Format: Article
Language:English
Published: American Physical Society, 2018-07-09T14:19:21Z.
Subjects:
Online Access:Get fulltext
LEADER 01108 am a22002173u 4500
001 116851
042 |a dc 
100 1 0 |a Yuan, Fanqi  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Physics  |e contributor 
100 1 0 |a Massachusetts Institute of Technology. Materials Systems Laboratory  |e contributor 
100 1 0 |a Yuan, Fanqi  |e contributor 
100 1 0 |a Fu, Liang  |e contributor 
700 1 0 |a Fu, Liang  |e author 
245 0 0 |a Model for the metal-insulator transition in graphene superlattices and beyond 
260 |b American Physical Society,   |c 2018-07-09T14:19:21Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/116851 
520 |a We propose a two-orbital Hubbard model on an emergent honeycomb lattice to describe the low-energy physics of twisted bilayer graphene. Our model provides a theoretical basis for studying metal-insulator transition, Landau level degeneracy lifting, and unconventional superconductivity that are recently observed. 
520 |a United States. Department of Energy (Award DE-SC0010526) 
546 |a en 
655 7 |a Article 
773 |t Physical Review B